
Software Quality Journal manuscript No.
(will be inserted by the editor)

A Framework for Testing First-Order Logic Axioms in
Program Verification

Ki Yung Ahn · Ewen Denney

Received: date / Accepted: date ; will be entered by the editor

Abstract Program verification systems based on automated theorem provers rely on user-
provided axioms in order to verify domain-specific properties of code. However, formulating
axioms correctly (that is, formalizing properties of an intended mathematical interpretation)
is non-trivial in practice, and avoiding or even detecting unsoundness can sometimes be
difficult to achieve. Moreover, speculating soundness of axioms based on the output of the
provers themselves is not easy since they do not typically give counterexamples. We adopt
the idea of model-based testing to aid axiom authors in discovering errors in axiomatiza-
tions. To test the validity of axioms, users define a computational model of the axiomatized
logic by giving interpretations to the function symbols and constants in a simple declarative
programming language. We have developed an axiom testing framework that helps auto-
mate model definition and test generation using off-the-shelf tools for meta-programming,
property-based random testing, and constraint solving. We have experimented with our tool
to test the axioms used in AUTOCERT, a program verification system that has been applied
to verify aerospace flight code using a first-order axiomatization of navigational concepts,
and were able to find counterexamples for a number of axioms.

Keywords model-based testing · program verification · automated theorem proving ·
property-based testing · constraint solving

1 Introduction

1.1 Background

Model-based development and automated code generation are increasingly used in safety-
critical domains (e.g., NASA’s Project Constellation uses MathWorks’ Real-Time Work-
shop), not only for simulation and prototyping, but also for actual flight code generation, in

Ki Yung Ahn
Department of Computer Science, Portland State University, Portland, OR 97201, USA
E-mail: kya@cs.pdx.com

Ewen Denney
m/s 269-2, NASA Ames Research Center, Moffett Field, CA 94035, USA
E-mail: Ewen.Denney@nasa.gov

2

Fig. 1: AUTOCERT narrows down the trusted base by verifying the generated code

particular in the Guidance, Navigation, and Control (GN&C) domain. However, since code
generators are typically not qualified, there is no guarantee that their output is correct, and
consequently the generated code still needs to be fully tested and certified.

Program verification systems based on automated theorem provers rely on user-provided
axioms in order to verify domain-specific properties of code. AUTOCERT (Denney and Trac,
2008) is a source code verification tool for autogenerated code in safety critical domains,
such as flight code generated from Simulink models in the guidance, navigation, and con-
trol (GN&C) domain using MathWorks’ Real-Time Workshop code generator. AUTOCERT

supports certification by formally verifying that the generated code complies with a range
of mathematically specified requirements and is free of certain safety violations. AUTO-
CERT uses Automated Theorem Provers (ATPs) (Sutcliffe, 2000) based on First-Order Logic
(FOL) to formally verify safety and functional correctness properties of autogenerated code,
as illustrated in Figure 1.

AUTOCERT works by using domain-specific verifiers (Denney and Fischer, 2008) to in-
fer logical annotations on the source code, and then using a verification condition generator
(VCG) to check these annotations. This results in a set of first-order verification conditions
(VCs) that are then sent to a suite of ATPs. These ATPs try to build proofs based on the
user-provided axioms, which can themselves be arbitrary First-Order Formulas (FOFs).

If all the VCs are successfully proven, then it is guaranteed that the code complies with
the properties1—with one important proviso: we need to trust the verification system, itself.
The trusted base is the collection of components which must be correct for us to conclude
that the code itself really is correct. Indeed, one of the main motivations for applying a
verification tool like AUTOCERT to autocode is to remove the code generator—a large,
complex, black box—from the trusted base.

The annotation inference system is not part of the trusted base, since annotations merely
serve as hints (albeit necessary ones) in the verification process—they are ultimately checked
via their translation into VCs by the VCG. The logic that is encoded in the VCG does need
to be trusted but this is a relatively small and stable part of the system. The ATPs do not
need to be trusted since the proofs they generate can (at least, in principle) be sent to a proof
checker (Sutcliffe et al, 2005). In fact, it is the domain theory, defined as a set of logical
axioms, that is the most crucial part of the trusted base. Moreover, in our experience, it is
the most common source of bugs.

1 The converse is not always true, however: provers can time out or the domain theory might be incomplete.

3

Formulating axioms correctly (i.e., precisely as the domain expert really intends) is non-
trivial in practice. By correct we mean that the axioms formulate properties of an intended
mathematical interpretation. The challenges of axiomatization arise from several dimen-
sions. First, the domain knowledge has its own complexity. AUTOCERT has been used to
verify mathematical requirements on navigation software that carries out various geometric
coordinate transformations involving matrices and quaternions. Axiomatic theories for such
constructs are complex enough that mistakes are not uncommon. Second, the axioms fre-
quently need to be modified in order to formulate them in a form suitable for use with ATPs.
Such modifications tend to obscure the axioms further. Third, it is easy to accidentally intro-
duce unsound axioms due to implicit, but often incompatible interpretations of the axioms.
Fourth, speculating on the validity of axioms from the output of existing ATPs is difficult
since theorem provers typically do not give any examples or counterexamples (and some,
for that matter, do not even give proofs).

1.2 Overview of the axiom testing framework

Our goal is to design and implement a testing framework for axioms that helps detect prob-
lems in the axioms more easily and at an early stage. We adopt the idea of model-based
testing to aid axiom authors and domain experts in discovering errors in axiomatization. To
test the validity of axioms, users define a computational model of the axiomatized logic by
giving interpretations to each of the function symbols and constants as computable func-
tions and data constants in a simple declarative programming language. Then, users can
test axioms against the computational model with widely used software testing tools. The
advantage of this approach is that users have a concrete intuitive model with which to test
validity of the axioms, and can observe counterexamples when the model does not satisfy
the axioms.

In summary the testing framework

– is configurable by user-provided interpretations of the logic described in a simple declar-
ative programming language

– and this user-provided interpretation is also valuable as an intuitive and manageable
specification of domain knowledge,

– automatically derives a testable property for each axiom,
– automatically derives test data generators for linear constraints in each axiom.

We believe that the interpretation provided for testing also provides a more intuitive and
manageable specification of domain knowledge than the axiomatization itself. It is more in-
tuitive since the interpretation is a computational model and program verification is about
programs that compute2. It is more manageable since it is often much more succinct than the
axioms (e.g., consider the array type which is just a given feature or library in programming
languages, but it needs several axioms to state several properties of arrays in FOL.) and less
likely to change throughout the verification process unlike the axioms (recall Section 1.1).
We will discuss why axioms are not the most effective means of specifying domain knowl-
edge in Section 3, which illustrates some of the pitfalls in developing axioms. Then, we
show how we test some examples of axioms used by AUTOCERT in a high-level view, and

2 In fact, we could even choose to define the interpretation using the actual libraries that will be used in
the production implementation, by calling on the Haskell library or using the Foreign Function Interface of
Haskell to call external libraries written in other languages like C.

4

fof(update_last, axiom,

 ![A,I,X,Y] : %$ [array4,integer,double,double]

 ((leq(lo(A),I) & leq(I,hi(A)))

 => update(update(A,I,X),I,Y) = update(A,I,Y))).

(assert (= (lo a) 0))
(assert (= (hi a) 3))
(assert (<= (lo a) i))
(assert (<= i (hi a)))

randomly generate values
for unconstrained variables:
 a :: array4
 x :: integer
 y :: integer

(= i 0)
(= (lo a) 0)
(= (hi a) 3)

(= i 1)
(= (lo a) 0)
(= (hi a) 3)

(= i 2)
(= (lo a) 0)
(= (hi a) 3)

(= i 3)
(= (lo a) 0)
(= (hi a) 3)

solve with
Yices

\(a,i,x,y) ->
 not(lo(a) <= i && i <= hi(a))
 || update(update(a,i,x),i,y) === update(a,i,y)

FOF to
Haskell
function
 using
Fig. 3(b)co

ns
tr

ai
nt

 f
ro

m
 ty

pe

FOF pr
em

ise
 to

Yice
s a

sse
rti

on

 u
sin

g
Fig.

 3(
a)

quickCheck (forAll generator property)

{ }
Fig. 2: Overview of the axiom testing framework

also discuss the issues that arise in testing those axioms in Section 4. We describe the al-
gorithms used in our testing framework implementation in Section 5, and elaborate on how
to use our testing framework by showing test scripts and running examples for some of the
axioms from the Thousands of Problems for Theorem Provers (Sutcliffe, 2009) (TPTP) in
Section 6. Section 7 discusses the class of testable axioms. We conclude with a discussion
of related work (Section 8) and thoughts for future work (Section 9).

Before going into the details, we first give a brief overview of the testing framework.
Figure 2 illustrates the computational flow. The testing framework consists of two major
parts: deriving test properties (right side of the figure) and deriving test data generators
(left side of the figure). The axiom formula on top of Figure 2 is an input to the axiom
testing framework, and the code snippets in Figure 3 are symbol interpretations provided by
the user. Given such axiom input and the interpretations of the logical symbols appearing
in the axiom, our testing framework automatically derives both the property and test data
generator. Then, the generator is plugged with the property to run the test using QuickCheck
(Claessen and Hughes, 2000).

The property derived from the axiom is just a lambda expression (or anonymous func-
tion) in Haskell,3 which is a program that we can evaluate to true or false when the val-

3 We generate properties as first class values of Haskell, which is different from writing an interpreter or
an evaluator over syntax trees of first-order logic formulae. We use Template Haskell (Sheard and Peyton
Jones, 2002) to generate these properties as Haskell code at compile time from the axiom formulae input and
the user provided interpretation.

5

pred2yicesTable =
[("lt", \(x,y)-> x < y
, ("gt", \(x,y)-> x > y
, ("leq", \(x,y)-> x <= y
, ("geq", \(x,y)-> x >= y
]

term2yicesTable =
[("hi", \as-> VarE "hi" ‘APP‘ as)
, ("lo", \as-> VarE "lo" ‘APP‘ as)
]

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; array.yices
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define hi :: (-> (-> int real) int))
(define lo :: (-> (-> int real) int))

(a) Interpretation of logical symbols in Yices

pred2hsTable =
[("lt",[| uncurry (<) |])
,("gt",[| uncurry (>) |])
,("leq",[| uncurry (<=) |])
,("geq",[| uncurry (>=) |])
, ...
]

term2hsTable =
[("lo", [| lo |])
,("hi", [| hi |])
,("update", [| update |])
, ...
]

lo a = fst (bounds a)
hi a = snd (bounds a)
update(arr,i,c) = arr // [(i,c)]
...

(b) Interpretation of logical symbols in Haskell

Fig. 3: Interpretation of logical symbols

ues for function arguments are supplied. There is a natural translation from axioms4 to
lambda expressions once the interpretations of logical symbols are provided, as can be seen
from Figure 2.5 The universal quantification ![A,I,X,Y]: translates to lambda bindings
\(a,i,x,y)->, logical implication (P=>Q) to (not p || q) and logical conjunction & to
&& where \ is a notation for lambda in Haskell, p and q are translations of P and Q, and not,
||, and && are logical operators defined in Haskell Standard Prelude. Other than the universal
quantification and standard logical connectives (e.g., implication, and, or, not), the user must
provide an interpretation for the logical symbols appearing in the axioms, as in Figure 3(b),
which is also a piece of Haskell code. The interpretation consists of symbol translation tables
mapping logical symbol names to Haskell names, along with the definitions of the Haskell
names which are not already defined. For example, we only map "leq" to the predefined
less-than-equal operator (<=), but we give definitions for hi, lo and update.6 The transla-
tion from axioms to properties is possible since the axioms we deal with are limited forms
of FOF without any effective existential quantification. (We think that most axioms appear-
ing in program verification would not need existential quantifications.) We describe further
details of translation from axioms to properties in Section 5.1.

The test data generator is derived from the type annotation comments 7 and the premise
part of the axiom. This generator only generates meaningful test data that satisfies the con-

4 Not all axiom formulae that can be written with TPTP FOF syntax have a natural computational interpre-
tation. In practice, however, most axioms which are actually used in software verification, or as constructive
axioms for other domains, do have a computational interpretation. In Section 5, we discuss the class of axioms
that our framework can test.

5 We will write TPTP syntax (see http://www.cs.miami.edu/∼tptp/TPTP/SyntaxBNF.html) in
typewriter font, e.g., ![X,Y,Z]:((X=Y & ~(Y=Z)) => X=Z). We use this plain text TPTP syntax when
we quote axiom formulas verbatim. When we discuss first order formulae more conceptually or mathemat-
ically, such as when we describe algorithms on formulae, we use conventional math symbols for logical
connectives, e.g., ∀[X,Y,Z] : ((X = Y∧¬(Y = Z))⇒ X = Z).
We use italic math font for metavariables of formulae (P, Q, R, A, B, C, D) and terms (T).

6 We intentionally used the same Haskell names as the logical symbol names (e.g., mapping "hi" to hi)
for the sake of readability, but they do not have to be the same.

7 We specify type annotations in TPTP definition comments, which are comments that start with either %$
(for line comments) or /*$ (for block comments). A type annotation list is simply a comma delimited list of

6

strains of the type annotations and the premise part of the axiom, avoiding runtime errors
(e.g., array bounds error) and vacuously true tests (i.e., true by falsifying the premise). Over-
all, test data generation takes three steps:

1. extract the constraints from the type annotations and the premise
(see the four Yices assert commands in Figure 2),

2. solve the constraints with Yices to get a satisfying model
3. randomly generate variables that are not constrained in the model.

The step 1 of extracting constraint is done once when we derive each of the data generator.
Then, when QuickCheck invokes the data generator, it communicates with Yices repeating
steps 2 and 3 to generate multiple test data. The user must provide interpretation of logical
symbols in Yices (Figure 3(a)) to translate the premise of the axiom into the constraints of
Yices assert commands, similarly as we gave interpretation in Haskell to derive properties
from the axiom. The difference is that we must give definitions in a separate .yices file for
the Yices names which are not predefined in Yices, because Yices (not Haskell) is to read
in and solve these extracted constraints. Note that the constraints that our testing framework
can handle are limited by the solver used in the implementation, that is Yices, which can only
solve linear constraints of particular domains. But, we think this is still useful since premises
of the axioms used in program verification are most likely to be linear properties (e.g., array
bounds, comparison on numbers), although their conclusion part may mention non-linear
properties. And, even when the constraints are not solvable by Yices, it is still very useful
to have automatically derived test properties since we can manually program test generators
(see Section 6.2) or supply manually collected test data to those derived properties. We
describe further details of translation from axioms to properties in Section 5.2.

2 Methods and Tools

In the previous section, we mentioned several methods and tools used in our axiom testing
framework (see Figure 2). In this section, we give a brief introduction to each of them:
the TPTP language, Haskell libraries (QuickCheck and Template Haskell) and Yices. We
also mention some of the design choices related to the features of the methods and tools
introduced in this section.

2.1 The TPTP Language: standardized format for ATP systems

Thousands of Problems for Theorem Provers (TPTP) is a library of test problems for Au-
tomated Theorem Proving (ATP) systems. The TPTP Language is a standardized format
to write problems, record derivations, and record finite interpretations (or finite models).
Through this standardized language, we can share problems and compare the results for the
problems among many different ATP systems. The TPTP Language has four sublanguages:
CNF (clausal normal form), FOF (first-order form), TFF (typed first-order form), and THF
(typed higher-order form). Most ATP systems support CNF and FOF, while fewer ATP sys-
tems support THF. TFF is a recently added, syntactically conservative extension to FOF,
which can easily be translated into FOF in the absence of interpreted arithmetic. Some ATP

identifiers starting with lowercase alphabet, enclosed in square brackets. The length of a type annotation list
must be the same as the list of universally qualified variables that is being annotated.

7

systems directly support TFF. The complete grammar of the TPTP language including all
four sublanguages can be found on the TPTP homepage.8

Ideally, we should axiomatize domains involving heavy use of arithmetic in TFF rather
than FOF. However, since few ATP systems currently support TFF, in our work we focus on
FOF. All our axioms and problems (or verification conditions) are currently written in FOF.

here, we illustrate the FOF syntax using examples. Consider axiomatizing the concepts
of graph theory and posing problems conjecturing the properties about the concepts. We can
axiomatize the definition of the connected vertices relation as a first-order formula:

∀X ,Y.(conn(X ,Y)⇔ (X = Y ∨adj(X ,Y)∨ (∃Z.(adj(X ,Z)∧ conn(Z,Y)))))

We can write the formula above in FOF syntax as follows:

fof(conn_def, axiom,

![X,Y]:(conn(X,Y) <=> (X=Y | adj(X,Y) | (?[Z]:(adj(X,Y) & conn(Z,Y)))))).

We can describe a problem that conjectures the transitivity of the connected vertices relation
as a first-order formula: ∀X ,Y,Z,(conn(X ,Y)∧conn(Y,Z))⇒ conn(X ,Z). We can write the
formula in FOF syntax as follows:

fof(conn_trans, conjecture,

![X,Y,Z]:((conn(X,Y) & conn(Y,Z)) => conn(X,Z))).

Once we write down the axioms and the conjectures in FOF syntax, we can supply them as
input to the ATP systems to search for the proofs of the conjectures.

2.2 QuickCheck: a property based testing library

QuickCheck is a property (or specification) based testing library for Haskell. Typical use of
the QuickCheck library consists of two parts: describing the testable properties and supply-
ing the test generators. We can write both the properties and the generators in plain Haskell
code. QuickCheck provides default random generators for many primitive types (e.g., Int,
Double, and Char), and is systematically extensible to datatypes containing those types,
which already have default random generators (e.g., pair of integers (Int,Int), list of inte-
gers [Int], list of integer pairs [(Int,Int)], and so on). In QuickCheck terminology, we
say that the types which have default random generators belong to the Arbitrary class.

Testable properties are either expressions of QuickCheck’s Property datatype, boolean
values of type Bool, or functions that can return testable properties from the arguments
of the Arbitrary class. The boolean values are simply unconditional trivial properties that
evaluate to either True or False. Hence, interesting properties are most likely to be specified
by functions that return boolean values or Property values. Haskell’s powerful type class
mechanism empowers the QuickCheck library to flexibly handle functions of varying types,
such as Int->Bool or (Int,Int)->Bool. All such testable properties eventually boil down
to an abstract datatype called Property, and the core of the QuickCheck library operates
internally on the Property.

For example, we can specify the reflexivity property and the transitivity property of the
less-than-or-equal relation on integers with the following Haskell code:

8 http://www.tptp.org/

8

lt_Int_refl :: Int -> Bool

lt_Int_refl x = x <= x

lt_Int_trans :: (Int,Int,Int) -> Property

lt_Int_trans (x,y,z) = (x <= y && y <= z) ==> y <= z

QuickCheck accepts both functions lt_Int_refl and lt_Int_trans as testable proper-
ties, since the arguments to these functions are of Arbitrary class and their return types
are Bool and Property. The reason why lt_Int_trans returns Property is because of
the use of QuickCheck’s implication combinator (==>) :: Testable prop -> Bool =>

prop -> Property. This combinator has a different semantics in terms of testing, as com-
pared to defining the logical implication combinator simply by translating “P implies Q” into
“not P or Q”. QuickCheck counts only the meaningful true tests which satisfy the premise as
successful tests, but discards the vacuously true tests which falsify the premise. In practice,
when we demand that QuickCheck run through 100 successful tests for lt_Int_trans, it
will need to generate about 600 tests discarding about 500 vacuously true tests. The default
QuickCheck configuration searches for 100 tests and allows 500 maximum discarded tests.
Hence, lt_Int_trans we are lucky for QuickCheck to even run through 100 successful
tests, but sometimes QuickCheck will give up when running on the default configuration
(since the default maximum discarded number of tests is by default is 500, which is less
than the average of 600).

For comparison, consider an alternative specification of the transitivity property of the
less-than relation on integers, where the implication is translated into its logically equivalent
form:

lt_Int_trans’ :: (Int,Int,Int) -> Bool

lt_Int_trans’ (x,y,z) = not (x <= y && y <= z) || y <= z

When we ask QuickCheck to run through 100 successful tests for lt_Int_trans’, it will
only need to generate 100 tests, but 83 of them turn out to be vacuously true test cases
falsifying (x <= y && y <= z).

While QuickCheck’s implication operator is convenient for filtering out uninteresting
tests among randomly generated tests, it has some limitations. Firstly, it becomes intractable
to handle the premises satisfying a very small portion of the domain. An extreme example
is the symmetry property of the equality relation on integers:

eq_Int_symm :: (Int,Int) -> Property

eq_Int_symm (x,y) = x == y ==> y == x

QuickCheck will not be able fulfill our demand for 100 successful tests on eq_Int_symm in
the default configuration, since it will discard too many vacuous tests and give up, reach-
ing the default limit on the number of maximum tests to try. We can barely handle the
previous example of lt_Int_trans in the default configuration. It is possible to configure
QuickCheck parameters to increase the limit, but there is little hope of effectively testing
complex properties purely relying on the default random test generators.

A recommended approach is to supply custom smart generators when the default gener-
ators are not effective. The QuickCheck library provides the forAll :: (Testable prop,

Show a) => Gen a -> (a->prop) -> Property combinator that combines a generator
(Gen a) and a testable function property (a->prop) into a Property. For example, the prop-
erty lt_Int_trans is equivalent to (forAll arbitrary lt Int trans), where arbitrary
is the default random generator. Instead of supplying the default generator, we can supply
custom smart generators, which generate interesting tests only, or at least more often then

9

the arbitrary generator. For example, we can build a smart generator which returns integer
triples of non-decreasing order as follows:
orderedTriple :: Gen (Int,Int,Int)

orderedTriple = do (x,y,z) <- arbitrary -- generate random tuple

let [x’,y’,z’] = sort [x,y,z] -- sort them

return (x’,y’,z’) -- return sorted tuple

Then, (forAll orderedTriple lt_Int_trans) will run through 100 successful tests in
exactly 100 generated tests, without generating any vacuous tests. With this smart generator
(forAll orderedTriple lt_Int_trans’) effectively behaves the same.

Another limitation of QuickCheck’s implication operator is that it cannot be nested on
the left. The (==>) operator requires the premise to be Bool but returns Property. This
is a reasonable design since (==>) has a testing semantics of discarding vacuous tests that
falsifies the premise. It is unclear what the testing semantics should be when it is left-nested.
Therefore, our testing framework preprocess the axiom formulae of nested implications into
a non-nested single level implication. We call these preprocessing steps unrolling and flat-
tening (see Section 5).

Although we can manually write smart generators systematically, it may be tedious to
write them every time. Moreover, it would not be practical to require collaborators who are
unfamiliar with Haskell to learn the details of QuickCheck, just to run more effective tests
on the axioms. Therefore, in this work, we try to automate the process of writing the smart
generators by using SMT solvers to generate tests.

2.3 Yices: an SMT solver

Yices is a Satisfiability Modulo Theories (SMT) solver we use to build our axiom testing
framework. We can think of SMT solvers as an extension to SAT solvers with decision
procedures, which make use of background theories. Linear arithmetic (i.e., equalities, in-
equalities, addition, subtraction, and multiplication and division by constants) on integers
and rational numbers are most commonly supported theories in SMT solvers. Since SMT
relies on background theories of specific type of values, SMT problem descriptions should
be given in a typed language. Although there exists a standardized language for SMT, the
SMT-LIB format, we use Yices format in this work since we are currently only using Yices.
The Yices format is, in any case, very close to the SMT-LIB format.

For some simple axioms, we can translate the entire FOF axiom formula into the Yices
input format, and check whether it is satisfiable. For example, we only need the SMT solver
to validate the transitivity property on integers, since it only involves linear arithmetic. How-
ever, most axioms involve constraints, which SMT solvers cannot usually handle. Arithmetic
including non-constant multiplication and division is already undecidable in general, and
many engineering domains use more complex arithmetic functions such as trigonometry,
logarithm and exponentiation on real number bases. We have observed that many axioms
we needed to deal with are in the form of premise and conclusion, expressing the idea that
under certain constraints some property must hold. Many of these constraints in the premise
are linear constraints solvable by SMT solvers, while the conclusion part of the axiom is
not linear (e.g., if t1 + t2 = π

2 then sin2 t + cos2 t = 1). Our testing framework automates
the generation of tests satisfying such linear constraints (e.g., t1 + t2 = π

2) using the Yices
SMT solver. We currently do not have a good way of automation for the axioms with non-
linear constraints, but one still can supply manually crafted smart test generators written in
Haskell.

10

2.4 Template Haskell

Template Haskell is a meta-programming library and language extension to Haskell, sup-
ported by the GHC compiler. Template Haskell provides a library to build syntax trees for
Haskell data structures, and some additional language constructs to reify the syntax tree into
Haskell code at compile time. In other words, Template Haskell is a compile time Haskell
code generator tightly integrated into Haskell as a language extension.

In our testing framework, we automatically collect the constraints from the premise of
the axioms. Then, we need to translate those constraints into Haskell functions testable by
QuickCheck. Here, we use Template Haskell to translate the constraints into Haskell code
at compile time.

We also use template Haskell to generate some stubs for interfacing with the Yices SMT
solver at compile time. In fact, the interaction with SMT does not have to be entirely at
compile time, but we choose to implement it this way for simplicity of the implementation.

3 A scenario of axiom development

In vehicle navigation software, frames of reference are used to represent different coordi-
nate systems within which the position and orientation of objects are measured. Navigation
software frequently needs to translate between different frames of reference, such as be-
tween vehicle-based and earth-based frames when communicating between mission control
and a spacecraft. A transformation between two different frames can be represented by a
so-called direction cosine matrix (DCM) (Kuipers, 1999; Vallado, 2001). Verifying navi-
gation software therefore requires us to check that the code is correctly carrying out these
transformations, that is, correctly represents these matrices, quaternions, and the associated
transformations. As we will show, however, axiomatizing these definitions and their proper-
ties is error-prone.

In the following subsections we will use a simplified running example of a two-dimensional
rotation matrix (rather than a 3D transformation matrix).

3.1 Axiomatizing a two-dimensional rotation matrix

The two dimensional rotation matrix for an angle t is given by
(

cos(t) sin(t)
−sin(t) cos(t)

)
. Matrices in

control code are usually implemented using arrays, and the most obvious way to axiomatize
these arrays in FOL is extensionally, i.e.,

select(A,0) = cos(T) ∧ select(A,1) = sin(T) ∧ ·· ·

but this is unlikely to prove useful in practice. Consider the C implementation init in Ta-
ble 1, which is intended to initialize a two dimensional rotation matrix. A VCG will apply the
usual array update rules to derive that the output X should be replaced by update(update(

update(update(a, 0, cos(t)), 1, sin(t)) , 2, uminus(sin(t))), 3, cos(t)).
Unfortunately, provers are generally unable to relate this update term to the extensional def-
inition so, instead, we use the following axiom, written in TPTP first-order formula (FOF)
syntax, which defines an array representation of the two-dimensional rotation matrix as a
binary relation rot2D between an array A and angle T.

11

C code Verification Condition

void init(float a[], float t)
{
a[0]= cos(t); a[1]= sin(t);
a[2]=-sin(t); a[3]= cos(t);

}

fof(vc, conjecture, ((lo(a)=0 & hi(a)=3)
=> rot2D(update(update(

update(update(a
,0, cos(t)),1,sin(t))
,2,uminus(sin(t))),3,cos(t))

,t))).

void init1(float a[], float t)
{
a[0]= sin(t);
a[0]= cos(t); a[1]= sin(t);
a[2]=-sin(t); a[3]= cos(t);

}

fof(vc1, conjecture, ((lo(a)=0 & hi(a)=3)
=> rot2D(update(

update(update(
update(update(a

,0, sin(t))
,0, cos(t)),1,sin(t))
,2,uminus(sin(t))),3,cos(t))

,t))).

void init2(float a[], float t)
{
a[0]= sin(t); a[1]= sin(t);
a[2]= sin(t); a[3]= sin(t);
a[0]= cos(t); a[1]= sin(t);
a[2]=-sin(t); a[3]= cos(t);

}

fof(vc2, conjecture, ((lo(a)=0 & hi(a)=3)
=> rot2D(update(update(

update(update(
update(update(
update(update(a

,0, sin(t)),1,sin(t))
,2, sin(t)),3,sin(t))
,0, cos(t)),1,sin(t))
,2,uminus(sin(t))),3,cos(t))

,t))).

void initX(float a[], float t)
{
a[0]=-cos(t); a[1]= sin(t);
a[2]=-sin(t); a[3]= cos(t);

}

fof(vcX, conjecture, ((lo(a)=0 & hi(a)=3)
=> rot2D(update(update(

update(update(a
,0,uminus(cos(t))),1,sin(t))
,2,uminus(sin(t))),3,cos(t))

,t))).

Table 1: 2D rotation matrix code and corresponding verification conditions

VC axioms EP (eprover) 1.1 Equinox 4.1
vc rotation2D_def Theorem Theorem

vc1
rotation2D_def CounterSatisfiable Timeout
rotation2D_def, update_last Theorem Theorem

vc2
rotation2D_def, update_last CounterSatisfiable Timeout
rotation2D_def, update_last, update_commute Theorem Timeout

vcX
rotation2D_def CounterSatisfiable Timeout
rotation2D_def, update_last CounterSatisfiable Timeout
rotation2D_def, update_last, update_commute Theorem Theorem

Table 2: Results of running EP and Equinox through the SystemOnTPTP website with default settings and a
timeout of 60 seconds.

fof(rotation2D_def, axiom, ![A,T]:((lo(A)=0 & hi(A)=3)

=> rot2D(update(update(update(update(A

, 0, cos(T)), 1,sin(T))

, 2,uminus(sin(T))), 3,cos(T)), T))).

The function init can be specified with precondition (lo(a)=0&hi(a)=3) and postcon-
dition rot2D(X,t), where X is the function output. In practice, we also have conditions on

12

the physical types of variables (e.g., that T is an angle), but omit this here. Using this spec-
ification for init gives the verification condition vc in Table 1. We can prove vc from the
axiom rotation2D def alone using two provers from SystemOnTPTP (Sutcliffe, 2000), as
shown in the first row of Table 2. We chose EP 1.1 and Equinox 4.1 here because these two
provers use different strategies. In general, it is necessary to use a combination of provers in
order to prove all the VCs arising in practice.

3.2 Adding more axioms

Initialization routines often perform additional operations that do not affect the initialization
task. For example, init1 and init2 in Table 1 assign some other values to the array ele-
ments before initializing them to the values of the rotation matrix elements. Although there
are some extra operations, both init1 and init2 are, in fact, valid definitions of rotation
matrices since they both finally overwrite the array elements to the same values as in init.
However, we cannot prove the verification conditions generated from these functions from
the axiom rotation2D_def alone (Table 2), because the theorem provers do not know that
two consecutive updates on the same index are the same as one latter update.

We can formalize this as the following axiom:
fof(update_last, axiom,

![A,I,X,Y] : update(update(A,I,X),I,Y) = update(A,I,Y)).

Then, both EP and Equinox can prove vc1 as a theorem from the two axioms rotation2D def

and update last, as shown in Table 2.
The verification condition vc2 generated from init2 is not provable even with the

update_last axiom added. This is because init2 has more auxiliary array updates before
matrix initialization, and update_last axiom is not applicable since none of the consecutive
updates are on the same index. To prove that init2 is indeed a valid initialization routine
we need the property that two consecutive independent updates can switch their order. The
following axiom tries to formalize this property.
fof(update_commute, axiom,

![A,I,J,X,Y] : update(update(A,I,X),J,Y) = update(update(A,J,Y),I,X)).

With this axiom added, EP can prove vc2 from the three axioms rotation2D def, update last,
and update commute, but strangely, Equinox times out. It is true that some theorem provers
can quickly find proofs while others are lost, depending on the conjecture. Nevertheless,
considering the simplicity of the formulae, the timeout of Equinox seems quite strange and
might indicate a problem.

The axiomatization of array operations has been well understood since the work of Mc-
Carthy and Painter (1967). The theory of arrays has been reasoned about in ATP systems,
and more recently it has been implemented as a built in theory for SMT solvers Bradley et al
(2006). Comparing the axioms here with the classical axioms, it should be readily apparent
that update commute is problematic. However, we will continue the discussion as if we were
creating the array axioms from scratch, to illustrate the problems that can be encountered
during axiom development with a minimal example.

3.3 Detecting unsoundness and debugging axioms

It is important to bear in mind when adding new axioms that we are always at risk of intro-
ducing unsoundness. One way to detect unsoundness is to try proving obviously invalid con-

13

jectures.9 For example, the verification condition vcX for the incorrect initialization routine
initX is invalid. The function initX is an incorrect implementation of the rotation matrix
(Section 3.1) because -cos(t) is assigned to the element at index 0 instead of cos(t), and
hence does not satisfy rot2D. However, both EP and Equinox can prove vcX. The problem
is that we have not thoroughly formalized the property that independent updates commute
in the axiom update_commute.

Note that the theorem provers have not guided us to the suspicious axiom as the source of
unsoundness. We decided to examine the axioms based on our own experience and insights,
not just because Equinox timed out. Theorem provers may also time out while trying to
prove valid conjectures from sound axioms. We should not expect that the most recently
added axiom is always the cause of unsoundness. Coming up with an invalid conjecture that
can be proven, and thus shows that the axioms are unsound, is usually an iterative process.
We used our own intuition to find the cause of the problem, again with no help from the
provers. Finally, note that the axiom rotation2D_def is already quite different from the
natural definition of the matrix given above.

In this section, we have shown that it can be difficult to debug unsoundness of the axioms
used in program verification systems even for three simple axioms. In practice, we need to
deal with far larger sets of axioms combining multiple theories. In the following section,
we will show how our method of testing axioms against a computational model helps us to
detect problems in axioms more easily and systematically.

4 Testing axioms

When we have a computational model, we can run tests on logical formulae against that
model. Since axioms are nothing more than basic sets of formulae that ought to be true, we
can also test axioms against such a model in principle. Before going into the examples, let
us briefly describe the principles of testing axioms. More technical details will be given in
Section 5.

Given an interpretation for function symbols and constants (i.e., model) of the logic, we
can evaluate truth values of the formulae without quantifiers. For example, plus(zero,zero)
= zero is true and plus(one,zero) = zero is false based on the interpretation of one as
integer 1, zero as integer 0, and plus as the integer addition function.

We can interpret formulae with quantified variables as functions from the values of the
quantified variables to truth values. For example, we can interpret ![X,Y]: plus(X,Y) =

plus(Y,X) as a function λ (x,y).x+y = y+x – in plain text Haskell syntax \(x,y)->x+y==y+x

– which takes two integer pairs as input and tests whether x+ y is equal to y+ x. This func-
tion will evaluate to true for any given test input (x,y). When there exist test inputs under
which the interpretation evaluates to false, then the original formula is invalid. For example,
![X,Y]: plus(X,Y)=X is invalid since its interpretation λ (x,y).x + y = x – plain text in
Haskell syntax \(x,y)->x+y==x – evaluates to false when applied to the test input (1,1).

Formulae with implication need additional care when choosing input values for testing.
To avoid vacuous satisfactions of the formula we must chose inputs that satisfy the premise.
In general, finding inputs satisfying the premise of a given formula requires solving equa-
tions, and for this we use a combination of the SMT solver Yices (Dutertre and de Moura,
2006) and custom data generators (so-called “smart generators”).

9 It is not enough to just try and prove false since different provers exploit inconsistency in different ways.
Moreover, a logic can be consistent yet still be unsound with respect to a model.

14

In the following subsections, we will give a high-level view of how we test the axioms
with the example axioms from Section 3 and also some from AUTOCERT. We elaborate on
further details of using our testing framework tool in Section 6, after discussing the internal
algorithms of the testing framework implementation in Section 5.

4.1 Testing axioms for numerical arithmetic

Numeric values are one of the basic types in programming languages like C. Although the
axioms on numerical arithmetic tend to be simple and small compared to other axioms
(e.g., axioms on array operations) used in AUTOCERT, we were still able to identify some
unexpected problems by testing. Those problems were commonly due to the untyped first-
order logic terms being unintentionally interpreted as overloaded types. Even though the
author of the axiom intended to write an axiom on one specific numeric type, say integers,
that axiom could possibly apply to another numeric type, say reals.

For example, the following axiom formalizes the idea that the index of an array repre-
senting an 3-by-3 matrix uniquely determines the row and the column:

fof(uniq_rep_3by3, axiom,

! [X1, Y1, X2, Y2]: %$ [int, int, int, int]

((plus(X1,times(3,Y1)) = plus(times(3,Y2),X2)

& leq(0,X1) & leq(X1,2) & leq(0,Y1) & leq(Y1,2)

& leq(0,X2) & leq(X2,2) & leq(0,Y2) & leq(Y2,2))

=> (X1=X2 & Y1=Y2))).

To test the axiom it is first translated into the following function (where we limit ourselves
to primitives in the Haskell prelude library):

λ (x1,y1,x2,y2) . ¬(x1 +3y1 = 3y2 + x2∧ 0≤ x1 ≤ 2 ∧ 0≤ y1 ≤ 2

∧ 0≤ x2 ≤ 2 ∧ 0≤ y2 ≤ 2)

∨(x1 = x2 ∧ y1 = y2)

or, in plain text Haskell syntax

\(x1,y1,x2,y2) ->

not(x1+3*y1==3*y2+x2 && 0<=x1 && x1<=2 && 0<=y1 && y1<=2

&& 0<=x2 && x2<=2 && 0<=y2 && y2<=2)

|| (x1==x2 && y1==y2)

Assuming that this function is defined over integers (i.e., x1, y1, x2, y2 have integer type),
we can generate test inputs of integer quadruples that satisfy the constraint of the premise
(x1 + 3y1 = 3y2 + x2 ∧ 0 ≤ x1 ≤ 2 ∧ 0 ≤ y1 ≤ 2 ∧ 0 ≤ x2 ≤ 2 ∧ 0 ≤ y2 ≤ 2). Since the
constraint is linear, Yices can generate such test inputs automatically, and all tests succeed.

However, nothing in the axiom says that the indices must be interpreted as integers, and
the axiom can just as well be interpreted using floating points, and with plus and times

interpreted as the overloaded operators + and * in C. If we test with this interpretation we
find counterexamples such as (x1,y1,x2,y2) = (1

2 , 1
2 ,2,0). The existence of such an unin-

tended interpretation can lead to unsoundness. More specifically, the axiom uniq_rep_3by3

is unsound and may prove some invalid conjectures if there are verification conditions that
matches floating point instances of this axiom (e.g., when verification conditions contain
floating point expressions of the form x+3y or 3y+ x).

15

It is important to note that the type annotation comments we provide for testing frame-
work has nothing to do with ruling out this kind of unsoundness. Type annotation comments
are just comments used only by our testing framework. One way to avoid such unsoundness
is to introduce explicit typing judgment predicate for all bounded variables as follows:

fof(uniq_rep_3by3, axiom,

! [X1, Y1, X2, Y2]: (

(int(X1), int(Y1), int(X2), int(Y2),

& plus(X1,times(3,Y1)) = plus(times(3,Y2),X2)

& leq(0,X1) & leq(X1,2) & leq(0,Y1) & leq(Y1,2)

& leq(0,X2) & leq(X2,2) & leq(0,Y2) & leq(Y2,2))

=> (X1=X2 & Y1=Y2))).

Some of the axioms in TPTP distribution (e.g., see GEO006+5.ax in TPTP version 5.0.0)
follow this style of having explicit typing judgments. Having explicit typing judgment pred-
icates on every variables makes testing easier as well, since extra type annotation comments
are no longer needed when all axioms are in this style.

4.2 Testing axioms for arrays

Array bounds errors can cause problems in axioms as well as in programming. For example,
recall the axiom update_last introduced in Section 3.

fof(update_last, axiom,

![A,I,X,Y] : update(update(A,I,X),I,Y) = update(A,I,Y)).

When we give the natural interpretation to update, the test routine will abort after a few
rounds of test inputs because the index variable I will go out of range.

Rather than complicate the model by interpreting the result of update to include a spe-
cial value for out-of-bounds errors, we modify the axiom to constrain the range of the array
index variable:

fof(update_last_in_range, axiom,

![A,I,X,Y]:((leq(lo(A),I) & leq(I,hi(A)))

=> update(update(A,I,X),I,Y) = update(A,I,Y))).

Now, all tests on update_last_in_range succeed since we only generate test inputs satis-
fying the premise (leq(lo(A),I) & leq(I,hi(A))).

Similarly, we can also modify the axiom update_commute as follows.

fof(update_commute_in_range, axiom,

![A,I,J,X,Y]:

((leq(lo(A),I) & leq(I,hi(A)) & leq(lo(A),J) & leq(J,hi(A)))

=> update(update(A,I,X),J,Y) = update(update(A,J,Y),I,X))).

Then, we can run the tests on the above axiom without array bounds error, and in fact
discover counterexamples where I and J are the same but X and Y are different. We can
correct this axiom to be valid as follows by adding the additional constraint that I and J are
different (i.e., either I is less than J or vice versa).

fof(update_commute_in_range_fixed, axiom,

![A,I,J,X,Y]:

((leq(lo(A),I) & leq(I,hi(A)) & leq(lo(A),J) & leq(J,hi(A))

& (lt(I,J) | lt(J,I)))

=> update(update(A,I,X),J,Y) = update(update(A,J,Y),I,X))).

16

The test for this new axiom succeeds for all test inputs.
As for the axiom rotation2D_def, itself, we observed above that it is quite different

from the “natural” definition of the matrix. Thus, we test the axiom against the interpretation
rot2D in Figure 5 with 100 randomly generated arrays of size 4 and find that it does indeed
pass all tests.

Finally, the axiom symm_joseph in Figure 4 is intended to state that
A+B(CDCT +EFET)BT is a symmetric matrix when A and F are N×N symmetric matri-
ces and D is an M×M symmetric matrix. This matrix expression, which is required to be
symmetric, arises in the implementation of the Joseph update in Kalman filters. However,
when we test this axiom for N = M = 3 and assuming B, C, and E are all 3×3 matrices, we
get counterexamples such as

(I0,J0,I,J,A,B,C,D,E,F,N,M) =

1,0,0,0,

 9.39 4.0 −3.53
4.0 0.640 −0.988
−2.29 −23.8 −1.467

 , ...

 .

We can immediately see that something is wrong since A is not symmetric. The problem is
that the scope of the quantifiers is incorrect and therefore does not correctly specify that the
matrices are symmetric. This is fixed in symm_joseph_fix using another level of variable
bindings for I and J, and the test succeeds for all test inputs under the same assumption that
N = M = 3 and B, C, and E are all 3×3 matrices. However, symm_joseph_fix still shares the
same index range problem as update_last and update_commute. Moreover, nothing in the
axiom prevents N and M being negative, and the dimensions for matrices B, C, and E are not
explicitly constrained to make the matrix operations mmul and madd well defined. One way
to avoid index range concerns is to explicitly specify the index range for every variable that
represents an array or matrices – this is in the same spirit of introducing typing judgment
predicates over numeric variables for axioms on numeric operations.

5 Design and implementation of the axiom testing framework

We limit the class of first-order formulas which we test in order to make the implemen-
tation of the testing framework feasible. In our experience, these restrictions do not pose a
practical problem since most verification related axioms fall into this category. Specifically,
we assume that axioms are expressed in a restricted subset of TPTP FOF for which the
following conditions hold:

(1) there are no existential quantifications (that is, all quantifications are universal),
(2) universal quantifications are nested to at most two levels (after lifting quantifiers in

strictly positive position to the top level – see below),
(3) inner universal quantifications can only appear in either strictly positive position or di-

rectly negative position in strictly positive position, and
(4) universally quantified formulas in negative position (i.e., the left-hand side of an impli-

cation) have a finite number of satisfying valuations for the quantified variables when
given a proper interpretation (and, given any required additional constraints for unrolling
– see below).

We now explain these restrictions in greater detail.

17

fof(symm_joseph, axiom,
! [I0, J0, I, J, A, B, C, D, E, F, N, M] : (

(leq(0,I0) & leq(I0,N) & leq(0,J0) & leq(J0,N)
& leq(0, I) & leq(I, M) & leq(0, J) & leq(J, M)
& select2D(D, I, J) = select2D(D, J, I)
& select2D(A,I0,J0) = select2D(A,J0,I0)
& select2D(F,I0,J0) = select2D(F,J0,I0))

=>
select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E)))),
trans(B)))), I0, J0)

= select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),
mmul(E,mmul(F,trans(E)))),

trans(B)))), J0, I0))).

fof(symm_joseph_fix, axiom,
! [A, B, C, D, E, F, N, M] : (

((! [I, J] : ((leq(0,I) & leq(I,M) & leq(0,J) & leq(J,M))
=> select2D(D,I,J) = select2D(D,J,I)))

& (! [I, J] : ((leq(0,I) & leq(I,N) & leq(0,J) & leq(J,N))
=> select2D(A,I,J) = select2D(A,J,I)))

& (! [I, J] : ((leq(0,I) & leq(I,N) & leq(0,J) & leq(J,N))
=> select2D(F,I,J) = select2D(F,J,I))))

=>
(! [I, J] : ((leq(0,I) & leq(I,N) & leq(0,J) & leq(J,N))

=> select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),
mmul(E,mmul(F,trans(E)))),

trans(B)))), I, J)
= select2D(madd(A,mmul(B,mmul(madd(mmul(C,mmul(D,trans(C))),

mmul(E,mmul(F,trans(E)))),
trans(B)))), J, I)

)))).

Fig. 4: An erroneous axiom on symmetric matrices and the fixed version

Assumption (1): In general, existential quantifications are hard to translate into testable
properties. However, existentials appear sparingly in axioms for software verification. For
example, in the software verification category (SWV) of the TPTP version 5.0.0 axiom set,
only 4 out of 221 axioms use existential quantification.

Assumption (2): Axioms can start with a top-level universal quantification which can con-
tain an inner universal quantification. However the inner quantified formula cannot contain
any other universal quantification. For example, the testing framework will accept ![X]:P
and ![X]:((![Y]:P) => (![Z]:Q)), but not ![X]:((![Y]:((![Z]:P) => Q)) => R)
where P, Q, R are quantifier-free formulas. More formally, we define a function level that
counts the nesting level of quantifications as follows:

level(∀[X1, · · · ,Xn] : P) = 1+ level(P)

level(¬P) = level(P)

level(P op Q) = max(level(P), level(Q)) where op ∈ {∧,∨,⇒,⇐,⇔}
level(p(T0, . . . ,Tn)) = 0 where p is a predicate symbol

level(T1 = T2) = 0

We only allow formulae of nesting levels less than or equal to two after flattening (Section
5.3.4), that is, after lifting the quantifiers at strictly positive positions to the top level. For

18

pred2hsInterpTable = [("rot2D",[|rot2D|]), ("lt",[|lt|]), ("leq",[|leq|])]
term2hsInterpTable =

[("lo",[|lo|]), ("hi",[|hi|]), ("update",[|update|])
, ("uminus",[|uminus|]), ("cos",[|cos|]), ("sin",[|sin|])
, ("0",[|0|]), ("1",[|1|]), ("2",[|2|]), ("3",[|3|])]

rot2D :: (Array Integer Double, Double) -> Bool
rot2D(a,t) = elems a === [cos t , sin t

, - sin t , cos t]

lo a = fst(bounds a)
hi a = snd(bounds a)

uminus :: Double -> Double
uminus x = -x

update :: (Array Integer Double, Integer, Double) -> Array Integer Double
update(arr,i,c) = arr // [(i,c)]

leq(x,y) = x <= y
let(x,y) = x < y

Fig. 5: Interpretation for the 2D rotation matrix axiomatization

example, our testing framework can handle formulae of the form ![X]:(![Y]:(![Z]:Q))

where Q is a level 0 subformula, since, after lifting, it becomes a flat formula ![X,Y,Z]:Q
whose level is 1.

Assumption (3): A subformula is in strictly positive position when it is either the top-level
formula or a subformula reachable by following the right hand side of implications. For ex-
ample, in A=>((B=>C)=>D), D is in strictly positive position, whereas B is positive (since
it is negative of negative) but not strictly positive. Both A and C are in negative position, but
only A is in what we refer to as “directly negative position”, which is the negative position
inside a formula at strictly positive position (Note that the top-level formula is strictly pos-
itive). We only allow inner universal quantification in positions like A and D. Universally
quantified variables in strictly positive positions disappear after flattening (Section 5.3.4)
since they are lifted to the top level. Universally quantified variables in directly negative
positions are unrolled (Section 5.3.4).

Logical negation also inverts positiveness and negativeness of the positions. For in-
stance, both P and Q in (P => ~Q) are in negative position; ~Q is in positive position,
but inside the negation it is inverted so that Q is negative.

We will often use “positive position” to mean “strictly positive position” and “nega-
tive position” to mean “directly negative positions in strictly positive positions” when we
talk about inner quantifications, since we already assume these restrictions of where inner
quantifications can appear in the axiom.

Assumption (4): Inner universal quantifications in negative position are unrolled to give
a conjunction of formulas substituted by all possible satisfying valuations. This assumption
allows us to conclude that the counterexamples we derive are indeed counterexamples, and is
closely related to Assumption (1) on existential quantification since ![X]:((![Y]:P)=>Q)

is logically equivalent to ![X]:((?[Y]:(~P)|Q)).10 Existential quantifications in general

10 ? is the symbol for existential quantification in TPTP FOF syntax.

19

Category (1) axioms with no implications and no inner quantifications

fof(eq_refl, axiom, ![X] : %$ [integer]
(X = X)).

Category (2) axioms with implications but no inner quantifications

fof(gt_trans, axiom, ![X,Y] : %$ [integer,integer]
((gt(X,Y) & gt(Y,Z)) => gt(X,Z))).

fof(update_last, axiom,
![A,I,X,Y] : %$ [array4,integer,double,double]

((leq(lo(A),I) & leq(I,hi(A)))
=> update(update(A,I,X),I,Y) = update(A,I,Y))).

Category (3) axioms with implication and inner quantifications only in positive positions

fof(update_last_nested, axiom,
![A,I] : %$ [array4,integer]

((leq(lo(A),I) & leq(I,hi(A)))
=> (![X,Y] : %$ [double,double]

update(update(A,I,X),I,Y) = update(A,I,Y)))).

Category (4) axioms with implications and inner quantifications only in negative positions

fof(mat_symm_trans_flat, axiom,
![A, N, I, J] : %$ [matrix3x3,integer,integer,integer]
(((![I ,J] : %$ [integer,integer]

((leq(0, I) & leq(I, N) & leq(0, J) & leq(J, N))
=> (selectM(A, I, J) = selectM(A, J, I))))

& (N=hiRow(A)) & (0=loRow(A)) & (N=hiCol(A)) & (0=loCol(A)))
=> ((leq(0, I) & leq(I, N) & leq(0, J) & leq(J, N))

=> (selectM(trans(A),I,J) = selectM(trans(A),J,I))))).

Category (5) axioms with implications and inner quantifications in both positive and negative positions

fof(mat_symm_trans, axiom,
![A, N] : %$ [matrix3x3,integer]
(((![I ,J] : %$ [integer,integer]

((leq(0, I) & leq(I, N) & leq(0, J) & leq(J, N))
=> (selectM(A, I, J) = selectM(A, J, I))))

& (N=hiRow(A)) & (0=loRow(A)) & (N=hiCol(A)) & (0=loCol(A)))
=> (![I, J] : %$ [integer,integer]

((leq(0, I) & leq(I, N) & leq(0, J) & leq(J, N))
=> (selectM(trans(A),I,J) = selectM(trans(A),J,I)))))).

Fig. 6: Examples of axioms in the testable FOL subset

are hard to translate into testable properties. However, when we know that the universally
quantified variables at negative positions are bounded, we can eliminate them by enumer-
ating all possible instances. Sometimes, we need to provide additional constraints to make
unrolling possible, For example, to unroll ![N]:(![I]:((leq(0,I)<(0,N))=>P)=>Q)

by enumerating possible values of I from 0 up to the value of N, we need to supply additional
constraints such as (assert (= N 3)).

Figure 6 lists examples of axioms that meet the above criteria in order of complexity
from the simplest (eq refl) to the most complex (mat symm trans). Using these exam-
ples, we now explain in detail how our testing framework derives testable properties (Sec-
tion 5.1) and test data generators (Section 5.2), and then summarize the overall algorithm
(Section 5.3). We discuss the class of testable axioms further in Section 7.

20

5.1 Deriving testable properties

Deriving properties from axioms with one level quantification without implications such
as eq refl in Figure 6 is easy. It translates to \x-> x === x. The universal quantification
![X]:... translates to the lambda binding \x-> ... in Haskell, and the quantified formula
translates to Haskell predicates following the translation rules. As mentioned in Section 1.2,
a user may define translation rules in addition to the predefined translation rules for logical
connectives and the equality. For eq refl we only need to refer to a predefined rule mapping
the equality to (===).

For axioms with implications, the implication (P=>Q) translates to (not p || q) by
the predefined translation rule for implication where p and q are translations of P and Q
respectively.11 For example, the axiom gt_trans translates to \(x,y,z)-> not(x>y &&

y>z) || x>z. Here, we refer to the user-defined translation rule for logical terms mapping
gt to (>). Similarly, update_last translates to the property shown in Figure 2.

Nested universal quantifications in positive position (i.e., right-hand side of implication)
are lifted to the top level before translating them into properties. For example, the axioms
update_last_nested and mat_symm_trans are transformed to logically equivalent formu-
las update_last and mat_symm_trans_flat respectively, before translating them to prop-
erties. Note that ![X]:(P=>(![Y]:Q)) is logically equivalent to ![X,Y]:(P=>Q) assuming
Y is not free in P.

Nested universal quantifications in negative position (i.e., left-hand side of implication)
are unrolled to give conjunctions of formulas substituted by all possible satisfying valua-
tions. Recall Assumption (4) that axioms have a finite number of satisfying valuations for
their universal quantifications, under a proper interpretation (and sometimes with additional
constraints). The testing framework often needs extra information such as type annotation
comments or additional constraint specifications, which are not present in the axiom for-
mulas, in order to unroll the universal quantifications in negative position. For example, the
testing framework needs to know that the variable A in the axiom mat_symm_trans_flat is
a 3× 3 matrix in order to unroll and eliminate the inner universally quantified variables I

and J appearing in mat_symm_trans_flat. Note that there are multiple quantifications of
I and J in mat_symm_trans_flat: the top level one and the inner one. To avoid ambiguity
from name conflicts, we alpha rename the inner quantified variables.12 For instance,

![I ,J] : %$ [integer,integer]

((leq(0, I) & leq(I, N) & leq(0, J) & leq(J, N))

=> (selectM(A, I, J) = selectM(A, J, I))))

may be alpha renamed to

![I0 ,J0] : %$ [integer,integer]

((leq(0, I0) & leq(I0, N) & leq(0, J0) & leq(J0, N))

=> (selectM(A, I0, J0) = selectM(A, J0, I0))))

The whole alpha renamed formula is shown in Figure 7. Then, the testing framework can fig-
ure out that N is equal to 2 (since hiRow(A) and hiCol(A) both equal to 2 because A is a 3x3

11 In the actual implementation, we attach some additional code for printing a debugging message when p
fails (i.e., evaluates to False for a generated test case while testing) in order to alert the user to vacuously true
test cases.

12 The axiom mat symm trans happens to have duplicate names only in negative position, but the testing
framework alpha renames any inner quantifications (including the ones at positive positions) when there are
duplicate variable names.

21

fof(mat_symm_trans_flat_alpha_renamed, axiom,
![A, N, I, J] : %$ [matrix3x3,integer,integer,integer]
(((![I0 ,J0] : %$ [integer,integer]

((leq(0, I0) & leq(I0, N) & leq(0, J0) & leq(J0, N))
=> (selectM(A, I0, J0) = selectM(A, J0, I0))))

& (N=hiRow(A)) & (0=loRow(A)) & (N=hiCol(A)) & (0=loCol(A)))
=> ((leq(0, I) & leq(I, N) & leq(0, J) & leq(J, N))

=> (selectM(trans(A),I,J) = selectM(trans(A),J,I))))).

Fig. 7: Alpha renamed axiom formula

fof(mat_symm_trans_flat_unrolled, axiom,
![A, N, I, J] : %$ [matrix3x3,integer,integer,integer]
(((((leq(0, 0) & leq(0, N) & leq(0, 0) & leq(0, N))

=> (selectM(A, I, J) = selectM(A, J, I)))
& ((leq(0, 1) & leq(1, N) & leq(0, 0) & leq(0, N))

=> (selectM(A, I, J) = selectM(A, J, I)))
& ((leq(0, 2) & leq(2, N) & leq(0, 0) & leq(0, N))

=> (selectM(A, I, J) = selectM(A, J, I)))
& ((leq(0, 0) & leq(0, N) & leq(0, 1) & leq(1, N))

=> (selectM(A, I, J) = selectM(A, J, I)))
& ((leq(0, 1) & leq(1, N) & leq(0, 1) & leq(1, N))

=> (selectM(A, I, J) = selectM(A, J, I)))
& ((leq(0, 2) & leq(2, N) & leq(0, 1) & leq(1, N))

=> (selectM(A, I, J) = selectM(A, J, I)))
& ((leq(0, 0) & leq(0, N) & leq(0, 2) & leq(2, N))

=> (selectM(A, I, J) = selectM(A, J, I)))
& ((leq(0, 1) & leq(1, N) & leq(0, 2) & leq(2, N))

=> (selectM(A, I, J) = selectM(A, J, I)))
& ((leq(0, 2) & leq(2, N) & leq(0, 2) & leq(2, N))

=> (selectM(A, I, J) = selectM(A, J, I))))
& (N=hiRow(A)) & (0=loRow(A)) & (N=hiCol(A)) & (0=loCol(A)))

=> ((leq(0, I) & leq(I, N) & leq(0, J) & leq(J, N))
=> (selectM(trans(A),I,J) = selectM(trans(A),J,I))))).

Fig. 8: Unrolled version of mat symm trans flat

matrix) and I0 and J0 are in the range of 0 to 2 (since leq(0,I0), leq(I0,N), leq(0,J0),
leq(J0,N) should hold), and unroll the inner quantified formula into a conjunction of nine
formulas (see Figure 8), which are the instantiations of the quantified formula above, with
all satisfying valuations (0,0), (0,1), · · · , (2,2) for the pair of variables I0 and J0. Once the
universal quantification in the negative position is eliminated, the translation to a property is
basically the same as translating update_last.

The nine satisfying valuations are automatically generated by the Yices constraint solver,
solving the constraints extracted from the type annotation and the constraints extracted from
the premise part (excluding the quantified formula to unroll, of course) of the axiom. We will
revisit the details of extracting constraints in the following subsection (Section 5.2) while
discussing test data generator derivation.

5.2 Deriving test data generators

We derive test data generators that generate non-trivial test cases to avoid vacuously true test
cases. That is, the automatically derived test data generators will only generate test data that

22

satisfies the premise. The test data generator is actually defined by extracting the constraints
from the premise. The constraints extracted from the premise must be the necessary and
sufficient condition for satisfying the premise, and they should be solvable by Yices.

The automatically derived test data generator operates in two steps to generate each
test case, as illustrated in Figure 2. It first solves the extracted constraints using the Yices
constraint solver, and then generates arbitrary values for unconstrained variables using
QuickCheck’s generator combinator library. For basic types such as integers and floating
point numbers, it is predefined how to generate arbitrary values in the QuickCheck library.
For the user defined types, the user should provide an instance of the Arbitrary class of the
QuickCheck library, which enables users to define their own meaning of “arbitrary”.

In order to derive a test data generator for the axiom, the testing framework extracts
constraints from the premise part of the axiom and the type annotation comments. Note that
the testing framework can derive test data generators for fewer axioms than for which it can
derive properties because the category of solvable constraints is limited by the ability of the
constraint solver used. In the majority of cases, this limitation is not a problem since many
of the constraints from axiom premises are linear (such as array bounds). And, even when
we cannot derive solvable constraints for the axiom, it is still helpful to have an auto-derived
property since we can manually write the test data generator for the property.

Deriving test data generators from axioms without implications such as eq_refl in Fig-
ure 6 is trivial, because there are no constraints to extract. Note that our testing framework
only extract constraints from the premise (i.e., left-hand side of implication) of the axiom.

We extract constraints from the axiom with implications; in particular, from the premise.
Since Yices is typed, it needs to know the types of the variables appearing in the constraints.
Since this type information is available in the type annotation comments, the testing frame-
work can introduce Yices define commands for each variable. For example, it introduces
two commands (define x::int) and (define y::int) for the axiom gt_trans, since
both logic variables X and Y are annotated as integers.

Some type annotations (e.g., array4, matrix3x3) contain extra information such as
index size constraints, while others (e.g., integer, double) do not. This additional infor-
mation introduces further constraints as Yices assert commands in addition to the define

commands. For instance, the variable A in the axiom update_last A has type annotation
array4. Thus, it introduces (define a::(-> int real)), and it also introduces (assert
(= (lo a) 0)) and (assert (= (hi a) 3)) as shown in Figure 2. The other variables I,
X, and J in update_last introduce one define command each: (define i::int), (define
x::real), and (define y::real).13

Nested universal quantifications in positive position are lifted to the top level before
extracting constraints. This is the same transformation as in the property derivation. For ex-
ample, the axioms update_last_nested and mat_symm_trans are transformed to logically
equivalent formulas update_last and mat symm trans flat respectively.

Nested universal quantifications in negative position are unrolled to give a conjunction
of formulas substituted by all possible satisfying valuations. This is the same transformation
as in the property deriving, but we have not yet discussed the details of how we unroll the
universal quantification in negative positions. Here, we discuss more details on how we use
Yices to enumerate all possible satisfying solutions of the universally quantified variables
at the negative positions with the mat_symm_trans_flat example. First, the testing frame-
work alpha renames the inner quantified variables just as in the property derivation – see
mat_symm_trans_flat in Figure 7. Then, the testing framework extracts constraints from

13 define commands derived from type annotation comments were omitted from Figure 2 for simplicity.

23

the top level type annotation and partially extracts constraints from the premise. It extracts
the following constraints from the type annotation matrix3x3 for A:

(assert (= 2 (hiRow a)))

(assert (= 0 (loRow a)))

(assert (= 2 (hiCol a)))

(assert (= 0 (loCol a)))

where hiRow and colRow would be declared properly in some .yices file as

(define hiRow :: (-> (-> int (-> int real)) int))

(define loRow :: (-> (-> int (-> int real)) int))

(define hiCol :: (-> (-> int (-> int real)) int))

(define loCol :: (-> (-> int (-> int real)) int))

in a similar fashion to hi and lo declared in Figure 2. It also extract partial constraints
from the premise of the axiom excluding the the inner quantified formula, which we are to
unroll, That is, from (N=hiRow(A)) & (0=loRow(A)) & (N=hiCol(A)) & (0=loCol(A))

it generates following constraints:

(assert (= n (hiRow a)))

(assert (= 0 (loRow a)))

(assert (= n (hiCol a)))

(assert (= 0 (loCol a)))

To unroll the inner quantified formula

![I0 ,J0] : %$ [integer,integer]

((leq(0, I0) & leq(I0, N) & leq(0, J0) & leq(J0, N))

=> (selectM(A, I0, J0) = selectM(A, J0, I0))))

the testing framework extracts constraints from the premise of this inner quantified formula.
That is, from leq(0,I0) & leq(I0,N) & leq(0,J0) & leq(J0,N), it extracts the follow-
ing constraints:

(assert (<= 0 i0))

(assert (<= i0 n))

(assert (<= 0 j0))

(assert (<= j0 n))

Finally, the testing framework invokes Yices to solve these 12 constraints (8 from the top
premise of the axiom excluding the inner formula, and 4 from the premise of the inner for-
mula). Yices then exhaustively searches for all solutions. To make Yices to search for all so-
lutions, we repeatedly assert the negations of the value assignments (the output following the
(check) command) for the variables of our interest, which are i0 and j0, until we reach the
unsatisfiable state ((unsat)) of Yices. After finding all satisfying valuations for I0 and J0, it
is trivial to unroll mat_symm_trans_flat in Figure 6 into mat_symm_trans_flat_unrolled

in Figure 8. Once the axiom formula is unrolled and all nested quantifications are flattened,
extracting constraints from the unrolled axiom formula is basically the same as for gt_trans
or update_last.

24

formula2proptop(∀[X1, · · · ,Xn] : P) = λ (x1, · · · ,xn)→ formula2prop(P) (1)

formula2prop(∀[X1, · · · ,Xn] : P) = error(“cannot happen”) (2)

formula2prop(P⇒ Q) = not(formula2prop(P)) || formula2prop(Q) (3)

formula2prop(Q⇐ P) = formula2prop(P⇒ Q) (4)

formula2prop(P⇔ Q) = formula2prop(P⇒ Q) && formula2prop(P⇐ Q) (5)

formula2prop(P∧Q) = formula2prop(P) && formula2prop(Q) (6)

formula2prop(P∨Q) = formula2prop(P) || formula2prop(Q) (7)

formula2prop(¬P) = not(formula2prop(P)) (8)

formula2prop(T1 = T2) = term2exp(T1) === term2exp(Tn) (9)

formula2prop(p(T1, · · · ,Tn)) = fp(term2exp(T1), · · · ,term2exp(Tn))

where fp is the Haskell interpretation of p (10)

term2exp(t(T1, · · · ,Tn)) = ft(term2exp(T1), · · · ,term2exp(Tn))

where ft is the Haskell interpretation of t (11)

Fig. 9: Property derivation algorithm

5.3 Algorithms

We summarize the algorithms for the informally explained steps of property derivation and
constraint derivation in the previous subsections. While describing these algorithms, we as-
sume that the formula input to the algorithm are all alpha renamed and free from name con-
flict issues. We describe the property derivation algorithm in Section 5.3.1 and the constraint
derivation algorithm in Section 5.3.2. The unrolling algorithm for unrolling inner quantifi-
cation at negative positions are described in Section 5.3.3, and the flattening algorithm for
lifting inner quantified variables at positive positions to top level in Section 5.3.4.

Note that the testing framework applies the algorithms in the reverse order of our pre-
sentation order in this section, since flattening and unrolling are pre-processing steps prior
to constraint derivation or property derivation.

5.3.1 Property Derivation Algorithm

Figure 9 gives the property derivation algorithm. The function formula2proptop, Equation
(1) in Figure 9, applies to the axiom formula. It translates universally quantified variables
X1, · · · ,Xn into Haskell lambda bindings x1, · · · ,xn, and applies formula2prop to the quanti-
fied formula P. The time complexity of the formula2prop algorithm is linear in the size of
the input formula.

Since we assume the inner quantified formulas are flattened and unrolled before property
derivation, Equation (2) is not used. Equation (3) translates logical implication based on the
fact that P⇒Q is logically equivalent to ¬P∨Q. Equations (4) and (5) for other implication
related connectives are implemented via Equation (3). Equations (Equation (6)), (Equation
(7)), and (Equation (8)) for translating logical conjunction, disjunction, and negation are
self-explanatory. Equation (9) translates equality. Equality in First-Order Logic is a special

25

premise2yices(∀[X1, · · · ,Xn] : P) = error(“cannot happen”) (12)

premise2yices(P⇒ Q) = (or (not p) q) where p = premise2yices(P)

q = premise2yices(Q) (13)

premise2yices(Q⇐ P) = premise2yices(P⇒ Q) (14)

premise2yices(P⇔ Q) = (= p q) where p = premise2yices(P)

q = premise2yices(Q) (15)

premise2yices(P∧Q) = (and p q) where p = premise2yices(P)

q = premise2yices(Q) (16)

premise2yices(P∨Q) = (or p q) where p = premise2yices(P)

q = premise2yices(Q) (17)

premise2yices(¬P) = (not p) where p = premise2yices(P) (18)

premise2yices(T1 = T2) = (= e1 e2) where e1 = term2yices(T1)

e2 = term2yices(T2) (19)

premise2yices(p(T1, · · · ,Tn)) = fp(term2yices(T1), · · · ,term2yices(Tn))

where fp is the interpretation of p

which is a meta-function

that generates Yices assertions (20)

term2yices(c) = e where e is the Yices interpretation of c (21)

term2yices(f(T1, · · · ,Tn)) = (e e1 · · · en)

where e is the Yices interpretation of f

ei = term2yices(Ti) for i = 1 . . .n (22)

Fig. 10: Constraint derivation algorithm

binary predicate which we always translate as an overloaded infix operator (===) in Haskell,
which user can define their own instance to give customized definition for the meaning of
equality, applied to the translations of the right-hand side and left-hand side arguments.
Equation (10) translates other n-ary predicates. Translations of these predicates depend on
the interpretation provided by the user. It maps the predicate symbol p to fp a function that
takes n Yices expressions, which are the translations of the argument terms of the predicate.

The function term2exp, Equation (11) in Figure 9, takes an n-ary term and translates it
into a Haskell expression according to the user provided interpretation. It maps the function
symbol t to ft, a Haskell function whose type is a function that takes n arguments, applied
to the translations of the argument terms.

5.3.2 Constraint derivation algorithm

The function premise2yices in Figure 10 applies to the premise part of the axiom. That is,
when we have an axiom ∀[X1, · · · ,Xn] : (P⇒ Q), we collect the constraints of the axiom by
evaluating premise2yices(P). The time complexity of the premise2yices algorithm is linear
in the size of the input premise formula.

The function premise2yices takes a formula as argument and returns a Yices expres-
sion of type bool. Since we assume the inner quantified formulas are flattened and unrolled

26

before property derivation, Equation (12) is not used. Equation (13) translates logical im-
plication based on the fact that P ⇒ Q is logically equivalent to ¬P∨Q. Equations (14)
and (15) for other implication related connectives are implemented via Equation (13). Equa-
tions (16), (17)), and (18) for translating logical conjunction, disjunction, negation, are self-
explanatory. Equation (19) translates equality. Equality in First-Order Logic is a special
binary predicate which we always translate as Yices equality applied to the translations of
the right-hand side and left-hand side arguments. Equation (20) translates other n-ary pred-
icates. Translations of these predicates depend on the interpretation provided by the user. It
maps the predicate symbol p to fp a function that takes n Yices expressions, which are the
translations of the argument terms of the predicate.

The function term2yices in Figure 10 takes a term and translates it into a Yices expres-
sion. Equation (21) translates constant symbols (i.e., 0-ary terms) into Yices expressions
according to the user provided interpretation. Equation (22) translates n-ary terms where
n > 0 into Yices expressions. It maps the function symbol f to e, a Yices expression whose
type is a function that takes n Yices expression arguments, applied to e1 · · ·en, the transla-
tions of the argument terms of the function symbol.

5.3.3 Unrolling algorithm

When nested universal quantifications appear at negative positions, (i.e., the premise part
of the axioms), our testing framework tries to unroll them. Recall, we assumed that the
quantified formula to unroll is in the form of implication and have finite satisfying valuations
for the quantified variables (see the fourth assumption in the beginning of Section5).

Some inner quantified formulas have enough information to unroll them. For exam-
ple, we can unroll the quantified formula ![I]:((leq(0,I)&leq(I,2))=>select(A,I)=0)
since we know that that satisfying valuations for I are 0,1, and 2 from the premise part of the
quantified formula alone, without any additional information. Other inner quantified formu-
las, such as mat symm trans flat which we discussed in Section5.1, need extra constraints
from other parts of the axiom to unroll the quantified formula. We call such extra constraints
from other parts of the axiom outer constraints.

We can calculate the outer constraint for any subformula (except the subformulas inside
the inner quantified formula to unroll) appearing in the premise part of the axiom, which
is not necessarily a quantified formula. The function outerConstraint in Figure 11 gives the
algorithm for tagging outer constraints to the subformulas appearing in the premise part of
the axiom. The function outerConstraint takes two arguments of an outer constraint and a
formula, and returns a tagged version of the formula where each subformula is tagged with
its outer constraint.14 The symbols P′ and Q′ appearing in the definition of outerConstraint

are the tagged version of the plain formulas P and Q.
Equations (28) and (29) are the core of outerConstraint. Equation (28) tags the outer

constraints of a logical conjunction. Consider the premise R∧ (P∧Q). Then the outer con-
straint of P∧Q would be the constraint derived from R, say c, since R is everything outside
the subformula P∧Q. The outer constraint of P is (and c c2) where c2 is the constraint de-
rived from Q. We need to collect both constraints c2, as well as c, as the outer constraint of
P, since Q should hold as well as P in order to make the conjunction P∧Q be true. Similarly,
the outer constraint of Q is (and c c1) where c1 is the constraint derived from P.

14 We express both plain formula and the tagged formula with a common parametrized data structure us-
ing the well known functional programming idiom called indirect composite (see http://haskell.org/
haskellwiki/Indirect composite).

27

outerConstraint(c,∀[X1, · · · ,Xn] : P) = (c,∀[X1, · · · ,Xn] : P′) (23)

outerConstraint(c,P⇒ Q) = (c, P̂⇒ Q̂) (24)

outerConstraint(c,Q⇐ P) = (c, Q̂⇐ P̂) (25)

outerConstraint(c,P⇔ Q) = (c, P̂⇔ Q̂) (26)

outerConstraint(c,P∧Q) = (c,P′ ∧Q′) (27)

where c1 = premise2yices′(P)

c2 = premise2yices′(Q)

P′ = outerConstraint((and c c2),P)

Q′ = outerConstraint((and c c1),Q) (28)

outerConstraint(c,P∨Q) = (c,P′ ∨Q′)

where P′ = outerConstraint(c,P)

Q′ = outerConstraint(c,Q) (29)

outerConstraint(c,¬P) = (c,¬P̂) (30)

outerConstraint(c,T1 = T2) = (c,T1 = T2) (31)

outerConstraint(c,p(T1, · · · ,Tn)) = (c,p(T1, · · · ,Tn)) (32)

where P̂ and Q̂ above are lifted versions of P and Q with all their nodes tagged with true, and

premise2yices′(∀[X1, · · · ,Xn] : P) = true (33)

premise2yices′(P⇒ Q) = (or (not p) q) where p = premise2yices′(P)

q = premise2yices′(Q) (34)

premise2yices′(Q⇐ P) = premise2yices′(P⇒ Q) (35)

premise2yices′(P⇔ Q) = (= p q) where p = premise2yices′(P)

q = premise2yices′(Q) (36)

premise2yices′(P∧Q) = (and p q) where p = premise2yices′(P)

q = premise2yices′(Q) (37)

premise2yices′(P∨Q) = (or p q) where p = premise2yices′(P)

q = premise2yices′(Q) (38)

premise2yices′(¬P) = (not p) where p = premise2yices′(P) (39)

premise2yices′(T1 = T2) = (= e1 e2) where e1 = term2yices(T1)

e2 = term2yices(T2) (40)

premise2yices′(p(T1, · · · ,Tn)) = fp(term2yices(T1), · · · ,term2yices(Tn)) (41)

where fp is the interpretation of p

which is a meta-function

that generates Yices assertions (42)

Fig. 11: tagging outer constraints

28

Equation (29) tags the outer constraints of a logical disjunction. Consider the premise
R∧(P∨Q). Then the outer constraint of P∨Q would be the constraint derived from R, let us
call it c. The outer constraint of P is also just c. Here, we need not propagate the constraints
from Q since the disjunction can hold by satisfying P alone without satisfying Q. For similar
reason, the outer constraint of Q is also just c.

We end the recursion and tag the formula with the accumulated constraint c when we
see an atomic formula in Equations (31)) and (32). We also stop recursion on Equations
(23), (24), (25), (26), and (30) since inner quantification cannot appear in another inner
quantification, implication inside premise, or negation.

Note that outerConstraint applies to the premise part of the axiom, and so is premise2yices′.
The function premise2yices′, which calculates the constraint of each subformulas, is same
as premise2yices in Figure 10 except that it returns true for the quantified formula instead
of an error (see Equation (23)). The reason that premise2yices′ returns true for the quanti-
fied formula is because we cannot not yet look into the inner quantified formula to collect
constraints since we treat it as a hole to fill in by unrolling (true means no constraint).

Once we have tagged the premise with outer constraints, unrolling the inner quantified
formula is straightforward. Let c be the outer constraint of ∀[X1, · · · ,Xn] : (P⇒ Q), and c′

be the constraint derived from P. We only need to search for all possible valuations for
X1, · · · ,Xn that satisfy (and c c′) using Yices.

The time complexity of outerConstraint is linear, but the time complexity of the un-
rolling algorithm also depends on that of the decision procedure of Yices to solve the con-
straint (and c c′). Since we are searching for all possible valuations for (and c c′), and not
just one, the complexity will depend on the number of possible valuations as well. There-
fore, we cannot give a definitive bound on the time complexity of the unrolling algorithm
in terms of the size of the input. Note that unrolling is a heuristic which assumes that the
effective existentially quantified variable appearing in the premise has a finite solution.

5.3.4 Flattening algorithm

Figure 12 gives the flattening algorithm. The function flattentop, Equation (43) in Figure 12,
applies to the axiom formula. It applies the function flatten to the quantified formula P to
collect the variables to lift: Y1, · · · ,Yn are the variables lifted from the positive positions
of P, and P′ is the resulting formula after lifting P. The time complexity of the flattening
algorithm is linear in the size of the input formula.

Equation (44) is where the lifting happens. We collect the quantified variables and leave
the quantified formula P detaching the universal quantification. We need not recurse on P
since we assume only two levels of quantification including the top level.

Equations (45), (46), and (47) are for lifting formulas of implication related connectives.
The latter two equations (46) and (47) call on the former one (45). In Equation (45), the
function flatten recurses on the positive position Q and the variables xs lifted from Q onto
its result.

Equations (48) and (49) for logical conjunction and disjunction simply recurse over the
structure of the formulas and concatenate the lifted variables from P and Q.

We do not do anything inside the negation in Equation (50), since lifting out universally
quantified variables introduces existentials. Similarly, equations (51) and (52) for equality
and other predicates have no effect.

29

flattentop(∀[X1, · · · ,Xn] : P) = ∀[X1, · · · ,Xn,Y1, · · · ,Ym] : P

where ([Y1, · · · ,Ym],P′) = flatten(P) (43)

flatten(∀[X1, · · · ,Xn] : P) = ([X1, · · · ,Xn],P) (44)

flatten(P⇒ Q) = (xs,P⇒ Q′) where (xs,Q′) = flatten(Q) (45)

flatten(Q⇐ P) = flatten(P⇒ Q) (46)

flatten(P⇔ Q) = flatten(P⇒ Q) ∧ flatten(Pα ⇐ Q)

where Pα is an alpha renamed P with fresh variables (47)

flatten(P∧Q) = (xs++ys,flatten(P)∧flatten(Q))

where (xs,P′) = flatten(P)

(ys,Q′) = flatten(Q) (48)

flatten(P∨Q) = (xs++ys,flatten(P)∨flatten(Q))

where (xs,P′) = flatten(P)

(ys,Q′) = flatten(Q) (49)

flatten(ys,¬P) = (ys,¬P) (50)

flatten(T1 = T2) = ([],T1 = T2) (51)

flatten(p(T1, · · · ,Tn)) = ([],p(T1, · · · ,Tn)) (52)

Fig. 12: flattening algorithm

6 Testing axioms from the TPTP axiom sets

In addition to axioms developed in the AUTOCERT project, we have also tested axioms from
the TPTP distribution. The TPTP axiom corpus contains a wide variety of axiomatized the-
ories, and we have tested constructive axioms from the algebra (ALG) and geometry (GEO)
axiom set categories. Axioms from the software creation (SWC) and software verification
(SWV) categories could also be tested though some would require more effort in order to
develop models for the appropriate domain knowledge (e.g., concurrency and security mod-
els).

In this section we describe axiom testing in full detail, including the Haskell scripts con-
taining interpretations and how to invoke the tests. We test axioms from ALG and GEO in
their original form, only adding type annotation comments to specify the types of quantified
variables.

6.1 Median algebra axioms

There is only one axiom file (ALG002+0.ax) in the ALG category of TPTP version 5.0.0,
which consists of four simple axioms shown below:

fof(majority,axiom,(! [X,Y] : /*$ [integer,integer] */ f(X,X,Y) = X)).

fof(permute1,axiom,(
! [X,Y,Z] : /*$ [integer,integer,integer] */ f(X,Y,Z) = f(Z,X,Y))).

30

fof(permute2,axiom,(
! [X,Y,Z] : /*$ [integer,integer,integer] */ f(X,Y,Z) = f(X,Z,Y))).

fof(associativity,axiom,(
! [W,X,Y,Z] : %$ [integer,integer,integer,integer]

f(f(X,W,Y),W,Z) = f(X,W,f(Y,W,Z)))).

The axioms above are quoted verbatim from the axiom file in the TPTP distribution, only
adding type annotation comments. These axioms axiomatize requirements of how median
functions should behave. The function symbol f represents a median function that returns a
median value among its three arguments. For example, if f were to be defined on integers
f(1,3,2) = 2.

To test the axioms we need to write three Haskell script files in Figure 13: one for parsing
in axioms (ALGLoad.hs), another for defining interpretation (ALGInterp.hs), and the other
for the main test script (ALGMain.hs). Figure 13 contains the full source code of these three
files.

In ALGLoad.hs, we parse and read in the list of axioms using the parseAxiomsFile2

function defined in the CommonUtils module. We import the CommonUtil module which
contains common utilities such as parseAxiomsFile2. We name each of the parsed in ax-
ioms as majority, permute1, permute2, associativity.15 It would not be difficult to
automatically generate scripts like ALGLoad.hs for loading axioms and binding them to
suitable Haskell names. If we had automated this part, we would only need to write the
other two files for testing an axiom set.

In ALGInterp.hs, we define interpretation of predicate symbols and function symbols.
Since there are no predicate symbols to interpret in the median algebra axioms, we leave
the pred2hsTable empty. Since f is the only uninterpreted symbol appearing in the median
algebra axioms, we only need give an interpretation of f. Since f is a function symbol, in
trem2hsTable, we map f to Haskell function median, which is a straightforward imple-
mentation of a median function over integer triples. We leave both pred2yicesTable and
term2hsTable empty, since we do not need to solve any constraints when testing these ax-
ioms. Note, constraints arise from the premise of the implication, but there are no logical
implication forms appearing in the median algebra axioms.

We also define an interpretation for the types used in the type annotation comments
in ty2tyTable. We omitted the discussion of type interpretations in the previous sections
since it is similar but simpler than interpretations for predicate and function symbols. We
map the type annotation integer to a correspondingly named Haskell integer value integer
defined in the CommonTypes module, which also contains definitions for other type values
such as double for the Haskell type Double, and also some array and matrix type values
(array4, matrix2x2, matrix3x3). Finally, we collect all this information to create a record
alginterp.

In ALGMain.hs, we import the parsed axiom formulae (ALGLoad) and the interpretation
ALGInterp to define runnable tests. The MACROS.h we include provides easy and simple
to use macro functions such as DERIVE PROP WITH GEN, which wraps some of the “clut-
ter” that comes from using Template Haskell.16 The macro functions in MACROS.h require

15 Here, we have chosen the names to coincide with the axioms names specified in the axiom file for clarity,
but this is not necessary.

16 We use Template Haskell to plug the interpretations of symbols with Haskell code into the automatically
derived properties, which are also first class Haskell functions. This gives us the ability to interactively run
tests and evaluate both the derived properties and the interpretation functions in the interactive environment of
GHC. However, programming with Template Haskell is more complicated than writing plain Haskell code in

31

module ALGLoad where

import System.IO.Unsafe (unsafePerformIO) -- Haskell base lib
import CommonUtil -- common utility of testing framework

axioms = unsafePerformIO (parseAxiomsFile2 "tptp5fof/ALG002+0.ax")

[majority, permute1, permute2, associativity] = axioms

(a) ALGLoad.hs – parsing axioms from the file

{-# LANGUAGE TemplateHaskell #-}
module ALGInterp where

import Data.List (sort) -- Haskell base lib
import CommonUtil -- common utility of testing framework
import CommonTypes -- integer, double, and array types

pred2hsTable = []
term2hsTable = [("f", [| median |])]
pred2yicesTable = []
term2yicesTable = []
ty2tyTable = [("integer", [| integer |])]

median :: (Integer, Integer, Integer) -> Integer
median (x,y,z) = sort [x,y,z] !! 1

alginterp = Interp { predInterp = pred2hsTable
, termInterp = term2hsTable
, includeY = []
, predInterpY = pred2yicesTable
, termInterpY = term2yicesTable
, typeInterp = ty2tyTable }

(b) ALGInterp.hs – defining the interpretation

{-# LANGUAGE CPP, TemplateHaskell #-}
module ALGMain where

import Codec.TPTP -- TPTP syntax and parser lib
import CommonUtil -- common utility of testing framework
import CommonTypes -- integer, double, and array types
import YicesQuick -- interfacing Yices and QuickCheck
import GenTest -- property and generator derivation
import ALGLoad
import ALGInterp

#define INTERPRETATION alginterp
#include "MACROS.h"

qcMajor = mQuickCheck DERIVE_PROP_WITH_GEN((formula majority))
qcPerm1 = mQuickCheck DERIVE_PROP_WITH_GEN((formula permute1))
qcPerm2 = mQuickCheck DERIVE_PROP_WITH_GEN((formula permute2))
qcAssoc = mQuickCheck DERIVE_PROP_WITH_GEN((formula associativity))

(c) ALGMain.hs – the main test script

Fig. 13: Haskell scripts for testing median algebra axioms

32

INTERPRETATION macro to be defined. Here, we set alginterp as the definition for the
macro INTERPRETATION. These macros are expanded by CPP, the C preprocessor, which
GHC invokes when the language pragma CPP is specified at the top of the file. The mQuickCheck
function is a monadic wrapper function of the quickCheck library function of QuickCheck,
which takes an IO prop type argument whereas quickCheck takes a prop type argument.
We need this wrapper since the derived test data generator exploits impure IO effects for
inter-process communication with Yices. When we only derive the property without deriv-
ing the generator, we can use quickCheck library function directly. The formula selects the
formula field of the axiom record, which has several other records such as the name field
and an optional annotation field (see logic-TPTP17 library for details).

After writing these three Haskell scripts, we can load the test script with GHCi, GHC’s
interactive environment, as follows:

$ ghci ALGMain.hs
GHCi, version 6.12.1: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
[1 of 8] Compiling TyAnnSyntax (TyAnnSyntax.hs, interpreted)
[2 of 8] Compiling YicesQuick (YicesQuick.hs, interpreted)
[3 of 8] Compiling CommonTypes (CommonTypes.hs, interpreted)
[4 of 8] Compiling CommonUtil (CommonUtil.hs, interpreted)
[5 of 8] Compiling GenTest (GenTest.hs, interpreted)
[6 of 8] Compiling ALGLoad (ALGLoad.hs, interpreted)
[7 of 8] Compiling ALGInterp (ALGInterp.hs, interpreted)
[8 of 8] Compiling ALGMain (ALGMain.hs, interpreted)
...
Ok, modules loaded: ALGMain, CommonUtil, CommonTypes, YicesQuick, GenTest,
ALGLoad, ALGInterp, TyAnnSyntax.
*ALGMain> qcMajor
[(define _X::int),(define _Y::int)]
+++ OK, passed 100 tests.
*ALGMain> qcPerm1
[(define _X::int),(define _Y::int),(define _Z::int)]
+++ OK, passed 100 tests.
*ALGMain> qcPerm2
[(define _X::int),(define _Y::int),(define _Z::int)]
+++ OK, passed 100 tests.
*ALGMain> qcAssoc
[(define _W::int),(define _X::int),(define _Y::int),(define _Z::int)]
+++ OK, passed 100 tests.

6.2 Constructive geometry axioms

We have tested some constructive geometry axioms in the GEO category, which axiomatizes
properties of points and lines—in particular, the GEO006 and GEO008 axiom sets. Figure
14 shows the axioms in one of the axiom files.

We choose to model this geometry in the two dimensional Cartesian plane. There are
other possible models, including three dimensional Cartesian space, but the geometry of
points and lines in the Cartesian plane is the simplest meaningful model. We model points
as arrays of size 2 whose first and second elements are x and y coordinate values and lines

several ways because of the stage restriction for compile time. We hide such details by using a preprocessing
macro.

17 http://hackage.haskell.org/package/logic-TPTP

33

%----Compatibility of convergence and unorthogonality
fof(occu1,axiom,(

! [L,M] : %$ [line, line]
(convergent_lines(L,M)
| unorthogonal_lines(L,M)))).

%----Apartness axiom for the conjunction of convergence and unorthogonality
fof(oac1,axiom,(

! [L,M,N] : %$ [line, line, line]
((convergent_lines(L,M)

& unorthogonal_lines(L,M))
=> ((convergent_lines(L,N)

& unorthogonal_lines(L,N))
| (convergent_lines(M,N)

& unorthogonal_lines(M,N)))))).

%----Axioms for the orthogonal construction
fof(ooc1,axiom,(

! [A,L] : %$ [point, line]
~ unorthogonal_lines(orthogonal_through_point(L,A),L))).

fof(ooc2,axiom,(
! [A,L] : %$ [point, line]

~ apart_point_and_line(A,orthogonal_through_point(L,A)))).

%----Constructive uniqueness axiom for orthogonals
fof(ouo1,axiom,(

! [A,L,M,N] : %$ [point, line, line, line]
(distinct_lines(L,M)

=> (apart_point_and_line(A,L)
| apart_point_and_line(A,M)
| unorthogonal_lines(L,N)
| unorthogonal_lines(M,N))))).

Fig. 14: Othogonality axioms in GEO006+3.ax

also as arrays of size 2 whose first and second elements are slope and y-intersect (i.e., a and
b are first and second elements when the equation for lines is y = ax+b).

We write three scripts of parsing, interpretation, and the main testing just as we did
for testing ALG axioms. The parsing script and the main testing script are pretty much the
same as the scripts for ALG axioms. The interpretation script has much more contents since
there are much more predicate and function symbols to interpret. We show some snippets
of testing GEO006 axioms in Figure 15. We give Haskell interpretations to the predicate
symbols like unorthogonal lines and function symbols like orthogonal through point.
We interpret the binary predicate unorthogonal lines be true when the product of slopes
of two arguments is not equal (by the operator =/=) to 1, which is the obvious interpre-
tation, and interpret the binary function orthogonal through point similarly. We also
give Yices interpretation of symbols that appear in the premise part of the axioms such as
convergent lines. We interpret the binary predicate convergent lines to be true when
the slopes of the two arguments differ. Note that we need not give Yices interpretations for
all the symbols, unlike for Haskell interpretations, since the testing framework only collects
constraints from the premise part of the axioms.

After writing these three Haskell scripts, we can load the test script into GHCi, as in
Figure 16. Notice that tests for axioms oac1 and ouo1 which consists of logical implication

34

pred2hsTable =
[..., ("unorthogonal_lines", [| unorthogonal_lines |]) , ...]

term2hsTable =
[..., ("orthogonal_through_point", [| orthogonal_through_point |]), ...]

pred2yicesTable =
[...
,("convergent_lines", \margs-> APP (margs!!0) [LitI 0]

:/= APP (margs!!1) [LitI 0])
]

term2yicesTable = []
ty2tyTable = [("point", [| point |]), ("line", [| line |])]

type Point = Array Integer Double
type Line = Array Integer Double

point = listArray(0,1)[0.0..] :: Point -- point type as array of size 2
line = listArray(0,1)[0.0..] :: Line -- line type as array of size 2

slope l = l!0 -- slope is the first element (0th) of the array
yinercept l = l!1 -- yintercept is the second element (1th) of the array

unorthogonal_lines :: (Line, Line) -> Bool
unorthogonal_lines (l1, l2) = slope l1 * slope l2 =/= 1

orthogonal_through_point :: (Line, Point) -> Line
orthogonal_through_point (l, p) = listArray(0,1)[m, b]

where
m = 1 / slope l
b = y - m * x
x = p!0
y = p!1

geo006interp = Interp { predInterp = pred2hsTable
, termInterp = term2hsTable
, includeY = ["array.yices"]
, predInterpY = pred2yicesTable
, termInterpY = term2yicesTable
, typeInterp = ty2tyTable }

(a) Excerpt of GEO006Interp.hs – defining interpretation

#define INTERPRETATION geo006interp
#include "MACROS.h"

qc_occu1 = mQuickCheck $ DERIVE_PROP_WITH_GEN((formula occu1))
qc_oac1 = mQuickCheck $ DERIVE_PROP_WITH_GEN((formula oac1))
qc_ooc1 = mQuickCheck $ DERIVE_PROP_WITH_GEN((formula ooc1)) -- fails
qc_ooc2 = mQuickCheck $ DERIVE_PROP_WITH_GEN((formula ooc2)) -- fails
qc_ouo1_ = mQuickCheck $ DERIVE_PROP_WITH_GEN((formula ouo1))
genPointLine :: Gen (Point, Line)
genPointLine = liftM2 (,) genPoint genGoodLine
genPoint :: Gen Point
genPoint = liftM (listArray (0,1)) (vector 2)
genGoodLine :: Gen Line
genGoodLine = do a<-arbitrary

b<-arbitrary
return $ listArray (0,1) [if a==0 then 1 else a, b]

qc_ooc1’ = quickCheck $ forAll genPointLine DERIVE_PROP((formula ooc1))
qc_ooc2’ = quickCheck $ forAll genPointLine DERIVE_PROP((formula ooc2))

(b) Excerpt of GEO006Main.hs – the main test script

Fig. 15: Haskell scripts for testing median algebra axioms

35

prints more output than those axioms which do not have implications. Both the tests for oac1
and ouo1 collects additional constraints from the premise, in addition to the constraint gen-
erated from type annotations, and, solves the constraint to generate non-trivial test cases that
satisfy the premise. (So, the non-trivial outputs are good signs.) The test for axioms ooc1
and ooc2 fail and report a counterexample for each of them. By examining the counterex-
ample array value, we can easily see that something goes wrong with zero values in arrays.
Here, it is because our model has corner cases where some axioms break down: when the
slope of a line is zero (i.e., when a=0 for the line y = ax+b), the slope value for orthogonal
line to this line is infinity. Since the reported counterexamples are just Haskell values and in-
terpretations of logical symbols are just Haskell functions, we can even run the function over
the value to confirm what we think is wrong really goes wrong. After realizing the limits of
the model, we may either adjust the model (or interpretation) to cover the corner cases or
refine the axioms further. But, even before making adjustments or refinements, we can still
write tests to examine whether the axiom make sense excluding that corner case we have
just discovered. We derive the property only without deriving the generator using the macro
function DERIVE PROP instead of GEN PROP WITH GEN. We can then supply a custom gener-
ator written manually using the QuickCheck library combinators. The generator we wrote
is genPointLine, which generates pairs of an arbitrary point (generated by genPoint) and
almost arbitrary line but disallowing slope of zero (generated by genGoodLine). Then, the
new tests excluding the case where slope of the line is zero succeeds.

7 Logical equivalence and testable equivalence

We automatically derive testable properties from the axiom formulae, but this is possible
since we restricted the possible formula we can handle. The unspoken assumption is that for
those restricted forms of formulae we accept, translating them with certain rewriting rules
that preserve logical equivalence does not affect the testable property, that is, the transfor-
mation preserves “testable equivalence”. However, this is not exactly true even within the
category of formulae we accept. For example, consider the application of the translation rule
for the (<=>) connective in the property derivation algorithm (Section 5.1), in combination
with unrolling (Section 5.3.3) and flattening (Section 5.3.4). For the formula

![X] : ((![Y] : P(X,Y)⇒ Q(X,Y))⇔ R(X))

we can unroll ![Y] : P(X,Y)⇒ Q(X,Y) into

(P(X,0)⇒ Q(X,0))∧ (P(X,1)⇒ Q(X,1))∧ (P(X,2)⇒ Q(X,2))

under some interpretation. Conceptually, we can think of the property derivation process
as having two phases: the first transforms the formula into a logically equivalent18 formula
suitable for deriving a property, and the second translates the transformed formula into a
property. The problem is that the first phase might have multiple possible transformations,
in contrast to the second phase, which is deterministic.

In our current implementation of the testing framework, we first transform this formula
into the following logically equivalent formula:

![X] : (((![Y] : P(X,Y)⇒ Q(X,Y))⇒ R(X))∧ (R(X)⇒ (![Y] : P(X,Y)⇒ Q(X,Y))))

18 To be more accurate, it is not just the logical equivalence since we also do transformation of unrolling
which is only equivalent under the given interpretation.

36

*GEO006Main> -- Tests on the axiom without premise ------------------------
*GEO006Main> qc_occu1
+++ OK, passed 100 tests.
*GEO006Main> -- Tests on axioms with premise ------------------------------
*GEO006Main> qc_oac1
(0 tests)
non-trivial case
(1 test)
non-trivial case
(2 tests)
...
non-trivial case
(99 tests)
non-trivial case
+++ OK, passed 100 tests.
*GEO006Main> qc_ouo1
(0 tests)
non-trivial case
(1 test)
non-trivial case
(2 tests)
...
non-trivial case
(99 tests)
non-trivial case
+++ OK, passed 100 tests.
*GEO006Main> -- Failing tests that reports counterexamples ---------------
*GEO006Main> qc_ooc1
*** Failed! Falsifiable (after 1 test):
(array (0,1) [(0,0.0),(1,0.0)],array (0,1) [(0,0.0),(1,0.0)])
*GEO006Main> qc_ooc2
*** Failed! Falsifiable (after 1 test):
(array (0,1) [(0,0.0),(1,0.0)],array (0,1) [(0,0.0),(1,0.0)])
*GEO006Main> -- Examine the counterexample ------------------------------
*GEO006Main> let p = array (0,1) [(0,0.0),(1,0.0)]
*GEO006Main> let l = array (0,1) [(0,0.0),(1,0.0)]
*GEO006Main> orthogonal_through_point(p,l)
array (0,1) [(0,Infinity),(1,NaN)]
*GEO006Main> -- Testing the axioms with manually written genrators -----
*GEO006Main> qc_ooc1’
+++ OK, passed 100 tests.
*GEO006Main> qc_ooc2’
+++ OK, passed 100 tests.

Fig. 16: Running the tests for axioms in GHC006+3.ax in GHCi

Then, we unroll the inner quantified formula at negative position and flatten the other inner
quantified formula at positive position as follows:

![X,Y] : ((((P(X,0)⇒ Q(X,0))∧ (P(X,1)⇒ Q(X,1))∧ (P(X,2)⇒ Q(X,2)))⇒ R(X))

∧ (R(X)⇒ (P(X ,Y)⇒ Q(X ,Y))))

Since the formula is flattened to level 1, we can then derive a testable property.
However, this is not the only possible transformation. Although our current implemen-

tation chooses to unroll only the inner quantified formula in negative positions, unrolling
inner quantified formulas in positive positions is just as valid. Therefore we could unroll the

37

two formulas, in both positive and negative positions as follows:

![X] : ((((P(X,0)⇒ Q(X,0))∧ (P(X,1)⇒ Q(X,1))∧ (P(X,2)⇒ Q(X,2)))⇒ R(X))

∧ (R(X)⇒ ((P(X ,0)⇒ Q(X ,0))∧ (P(X ,1)⇒ Q(X ,1))∧ (P(X ,2)⇒ Q(X ,2)))))

Alternatively, we could just unroll the inner formula in the original formula before rewriting
⇔ in terms of ⇒:

![X] : ((((P(X,0)⇒ Q(X,0))∧ (P(X,1)⇒ Q(X,1))∧ (P(X,2)⇒ Q(X,2)))⇔ R(X)))

Since the formula is flattened to level 1, we can again derive a testable property. The property
we derive here, though, is clearly different from that derived by the previous translation, i.e.,
the one used in our current implementation, since they take a different number of arguments
– one for [X] and the other for [X,Y]. We cannot always say which one is better than another,
in general, since it depends on the axiom author’s intention. The more complicated the forms
of axiom that we accept (e.g., allowing existentials, inner quantification nested more than
two levels, quantification inside negation) for testing, the more diverse the choices will be
for translating formulas into the forms for which it is straightforward to derive testable
properties.

8 Related work

The idea of evaluating propositions with respect to a computational interpretation goes back
to early work of Green (1969) and Weyhrauch (1980). More recently, there has been some
work on the use of testing to validate and debug logical conjectures. Claessen and Svens-
son (2008) use QuickCheck to test FOL conjectures arising in inductive proofs of protocol
correctness. Propositions are interpreted as invariants on a particular state transition system.
Generating test cases for invariants amounts to generating paths from a random initial state.
To test inductive invariants they “adapt” an arbitrarily chosen (possibly non-reachable) state
to the proposition-under-test, effectively giving a test data generator generator. Berghofer
and Nipkow (2004) also use QuickCheck, to test theorems in Isabelle/HOL, particularly
those involving inductive data types and inductive predicates. They create generators to
generate data of arbitrary size for any inductive data type. In both these cases, the authors’
goals are to test conjectures in a logic, rather than the axioms of the underlying logic itself,
given a computational model.

Carlier and Dubois (2008) have similar motivation and approach to ours, but in the set-
ting of a typed functional language and a higher-order proof assistant. Since they mostly rely
on random testing they generate and discard many test cases before they collect meaningful
test cases. In contrast, we try to generate tests data efficiently by automatically synthesiz-
ing smart generators. Dybjer et al (2003) explore testing and proving in a dependent type
setting, but do not automate the synthesis of test generators. We think dependent types can
offer systematic information to help synthesize test generators for size dependent data, such
as matrices, which depend on row and column sizes.

Planware (Blaine et al, 1998) is a system for the deductive synthesis of planning and
scheduling software. In deductive synthesis, implementations are synthesized from specifi-
cations through a sequence of correctness-preserving refinements. Correctness of these steps
ultimately rests on a logical axiomatization of the domain theory. In Planware, the axioms
are validated (Becker and Smith, 2005) via a theory morphism, that is, by translation into

38

conjectures in another logic, in this case, set theory, where they are proven as theorems. The
target theory thus serves as the intended interpretation.

Theory development in Isabelle (Paulson and Nipkow, 1994) also typically proceeds
in such a “definitional” style, where more complex properties are built from a small set-
theoretic core. However, we have not adopted this approach since we consider the domain-
specific axioms (in contrast to the underlying laws of arithmetic and relational algebra) to
be our starting point. These definitions and laws, typically coming from mission documents,
are thus tantamount to requirements. Moreover, it would be a lot of work to derive them
from first principles, and would provide little benefit to engineers.

The formulas which our system handles are a subset of the Bernays-Shoenfinkel-Ramsey
(or effectively propositional, EPR) class of first-order formulas, which is known to be de-
cidable; see Fontaine (2007); Pérez and Voronkov (2007); Piskac et al (2010). To the best
of our knowledge, however, the techniques for deciding EPR formulae are not applicable in
our setting. Here, we have interpreted function symbols, in particular, arithmetic functions.
Although there do exist techniques to decide EPR formulae in the presence of interpreted
function symbols, these can only be used under certain conditions: the domain and the range
of the functions must be distinct. Even when these conditions are met, algorithmic complex-
ity for the decision procedure may become intractable. Many of the axioms that arise in the
engineering domain contain arithmetic functions, and the domain and range coincide for
many such functions (e.g., mapping integers to integers, and reals to reals). Therefore, even
though our system happens to be handling a subset of the EPR class, we do not think those
techniques are directly applicable.

9 Conclusion and future work

We have described our approach to model-based testing of first-order logic axioms used by
the verification tool AUTOCERT. We believe that our approach can help to systematically
debug axioms, and also help maintain soundness of the logic while actively developing
axioms. We have shown that it is quite feasible to derive counterexamples, even when the
axioms are difficult to inspect. The computational model serves both as an interpretation
against which the axioms can be tested, and as a reference which can be inspected by domain
experts, since they remain significantly clearer than the axiomatization, particularly when
we optimize the axioms to make the theorem provers search for proofs more efficiently. One
clear conclusion we draw is the need for a typed logic to reduce unsoundness. Although
types can be encoded in an untyped setting, we plan to investigate the recently proposed
Typed First-Order Form (Claessen and Sutcliffe, 2009).

Previously, we had frequently run into either unsoundness or inconsistency, and some-
times this was not noticed until quite some time after the erroneous axioms had been added.
Using the testing framework we have been able to find counterexamples for some axioms
that had been previously known to be suspicious, as well as some previously unsuspected
axioms. It also helped us avoid unsoundness arising from implicit but different models of
the logic. Testing and proving are therefore complementary aspects to developing a formal
verification.

An important aspect of testing is discovering corner cases of idealized models (e.g.,
overflow in fixed point arithmetic and round-off errors in floating point arithmetic). In our
work, we used an arbitrary tolerance for round-off errors, but a more sophisticated notion,
depending on input variables, is appropriate.

39

In terms of developing an infrastructure for the certification of safety-critical software,
minimizing the trusted base is important. An important part of testing, and thus qualifying,
the axioms will be to develop an appropriate notion of coverage (as in (Carlier and Dubois,
2008)), to give some measure of confidence that enough testing has been done. In the case of
testing programs, coverage criteria are usually expressed in terms of branches and decisions
taken by the software. For axioms, we also aim to cover all branches (that is, all independent
ways of satisfying the hypotheses) as well as covering the domain (e.g., by considering all
representatives of each frame of a DCM).

Lastly, we have also tested a number of axioms that involve physical units and equa-
tions. These axioms need to be modified in order to make them observable and therefore
testable, but we believe that this can be done in a principled and systematic manner. We are
also loosening the restrictions on formulas. To accept more formulas for testing, we would
like to allow control over the two distinct phases of property generation discussed in Sec-
tion 7. The first phase would be an interactive semi-automated process that aids users in
selecting transformations while preserving logical equivalence to the original formula. In
the second phase, the tool would derive testable properties from the narrower category of
axiom formulae which have straightforward translations into properties.

One inconvenience we observed in our current framework is that the automation works
in an all-or-nothing fashion. We simply reject the generation of smart generators when we
cannot fully automate all the steps for the given axiom. Then the user needs to craft the
smart generator manually from scratch for that particular axiom. Of course, we can always
add better preprocessing algorithms to handle a wider class of formulae, and better SMT
solvers with more decision procedures that can solve more complex constraints. However,
there will always be formulae still outside the scope of full automation. One approach would
be to provide users with code templates with holes to instantiate when the automation fails.
The code template should contain automatically generated code that calls SMT solvers to
partially solve the linear arithmetic fragment (or, any other theories the SMT solver supports)
of the constraints.

One limitation of our current framework is that the unrolling and flattening algorithms
cannot handle effectively existential constraints and deeply nested left implications (see Sec-
tion 5 for details). Our goal in designing and implementing this axiom testing framework
has been to come up with a tool that works for many axioms. Though it may not be intrinsi-
cally difficult to manually analyze and craft smart test generators for one axiom, this quickly
becomes time consuming and tedious when there are many of them.

For future work, we aim to extend the framework in several directions:

– Support for existential quantification (at least with manually programmed existential
value suppliers),

– Partial automation when the constraints are only partially solvable,
– Using the shrinking feature of QuickCheck to generate minimal counter-examples, and
– Using the coverage feature of QuickCheck to inspect and report which subformulae and

terms have been covered, and how many times.

A long term goal is to extend the framework to test verification conditions (VCs) and
functions. Since VCs are generally machine generated and more complex than the axioms,
this would be possible after having extended our framework to a mature enough stage, in-
cluding the improvements mentioned in the items listed above. As observed by Claessen
and Svensson (Claessen and Svensson, 2008), we would like to know when a VC really
is invalid, and when it is simply unprovable due to a missing axiom. When we extend the

40

framework to be able to also test VCs, then it can help us gain insight into when the problem
lies in a missing axiom, rather than an invalid VC. Another related goal is to black-box test
library functions which implement the concepts in the axioms, using the same mathematical
specifications.

We also think there are some goals to be achieved together among the communities
related to theorem proving, constraint solving, and automated testing:

– Promoting TFF support from ATP systems:
Although it is possible to track type information encoding typing judgments as predi-
cates, it tends to discourage axiom authors to keep track of all the type specifications
when using the untyped FOF sublanguage, since the axiom formulae become quite ver-
bose. We believe the newly standardized TFF will greatly benefit axiom authors in the
engineering domain as more APT systems start to support TFF, since it is a typed lan-
guage and also supports standard interpretations for arithmetic.

– Syntax for annotating testing semantics of a logical formula:
We believe our constraint collection strategy of analyzing the shape of the formula does
work for the majority of the axioms in practice. However, sometimes the automatically
collected conditions may not match exactly with what the axiom author intended as the
“hypothesis”. The TPTP language allows the specification of hypothesis for problems
(or conjectures), but does not support specifying which fragment of an individual axiom
formula can be considered as an hypothesis. We are trying to find better ways to annotate
hypotheses in order to prove more fine-grained testing semantics (see Section 7) within
a formula.

References

Becker M, Smith DR (2005) Model validation in Planware. In: Verification and Validation
of Model-Based Planning and Scheduling Systems (VVPS 2005), Monterey, California,
USA

Berghofer S, Nipkow T (2004) Random testing in Isabelle/HOL. In: 2nd IEEE International
Conference on Software Engineering and Formal Methods (SEFM 2004), pp 230–239

Blaine L, Gilham L, Liu J, Smith D, Westfold S (1998) Planware: Domain-specific syn-
thesis of high-performance schedulers. In: The 13th IEEE International Conference on
Automated Software Engineering (ASE ’98), IEEE Computer Society, Honolulu, Hawaii,
USA, pp 270–280

Bradley AR, Manna Z, Sipma HB (2006) What’s decidable about arrays? In: Emerson EA,
Namjoshi KS (eds) VMCAI, Springer, Lecture Notes in Computer Science, vol 3855, pp
427–442, URL http://dx.doi.org/10.1007/11609773 28

Carlier M, Dubois C (2008) Functional testing in the Focal environment. In: Beckert B,
Hähnle R (eds) The Second International Conference on Tests and Proofs (TAP 2008),
Springer, Lecture Notes in Computer Science, vol 4966, pp 84–98, URL http://dx.

doi.org/10.1007/978-3-540-79124-9 7

Claessen K, Hughes J (2000) QuickCheck: a lightweight tool for random testing of Haskell
programs. In: Proceedings of the ACM SIGPLAN International Conference on Functional
Programming, pp 268–279

Claessen K, Sutcliffe G (2009) A simple type system for FOF. http://www.cs.miami.
edu/∼tptp/TPTP/Proposals/TypedFOF.html

Claessen K, Svensson H (2008) Finding counter examples in induction proofs. In: The Sec-
ond International Conference on Tests and Proofs (TAP 2008), pp 48–65

41

Denney E, Fischer B (2008) Generating customized verifiers for automatically generated
code. In: Proceedings of the Conference on Generative Programming and Component
Engineering (GPCE ’08), ACM Press, Nashville, TN, pp 77–87

Denney E, Trac S (2008) A software safety certification tool for automatically generated
guidance, navigation and control code. In: IEEE Aerospace Conference

Dutertre B, de Moura L (2006) The YICES SMT solver. Tool paper at http://yices.csl.
sri.com/tool-paper.pdf

Dybjer P, Haiyan Q, Takeyama M (2003) Combining testing and proving in dependent type
theory. In: 16th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2003), Springer, pp 188–203

Fontaine P (2007) Combinations of theories and the bernays-schönfinkel-ramsey class. In:
Beckert B (ed) VERIFY, CEUR-WS.org, CEUR Workshop Proceedings, vol 259, URL
http://ceur-ws.org/Vol-259/paper06.pdf

Green C (1969) The application of theorem proving to question-answering systems. PhD
thesis, Stanford University

Kuipers JB (1999) Quaternions and Rotation Sequences. Princeton University Press
McCarthy J, Painter J (1967) Correctness of a compiler for arithmetic expressions. In:

Schwartz JT (ed) Proceedings Symposium in Applied Mathematics, Vol. 19, Mathemat-
ical Aspects of Computer Science, American Mathematical Society, Providence, RI, pp
33–41

Paulson L, Nipkow T (1994) Isabelle: A Generic Theorem Prover, Lecture Notes in Com-
puter Science, vol 828. Springer-Verlag

Pérez JAN, Voronkov A (2007) Encodings of problems in effectively propositional logic. In:
Marques-Silva J, Sakallah KA (eds) SAT, Springer, Lecture Notes in Computer Science,
vol 4501, p 3, URL http://dx.doi.org/10.1007/978-3-540-72788-0 2

Piskac R, de Moura LM, Bjørner N (2010) Deciding effectively propositional logic using
DPLL and substitution sets. J Autom Reasoning 44(4):401–424, URL http://dx.doi.

org/10.1007/s10817-009-9161-6

Sheard T, Peyton Jones S (2002) Template metaprogramming for Haskell. In: ACM SIG-
PLAN Haskell Workshop 02, ACM Press, pp 1–16

Sutcliffe G (2000) System description: SystemOn TPTP. In: 17th International Conference
on Automated Deduction (CADE 2000), Springer, Lecture Notes in Computer Science,
vol 1831, pp 406–410

Sutcliffe G (2009) The TPTP Problem Library and Associated Infrastructure: The FOF and
CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4):337–362

Sutcliffe G, Denney E, Fischer B (2005) Practical proof checking for program certification.
In: Proceedings of the CADE-20 Workshop on Empirically Successful Classical Auto-
mated Reasoning (ESCAR ’05)

Vallado DA (2001) Fundamentals of Astrodynamics and Applications, 2nd edn. Space Tech-
nology Library, Microcosm Press and Kluwer Academic Publishers

Weyhrauch R (1980) Prolegomena to a theory of mechanized formal reasoning. Artificial
Intelligence 13(1,2):133–170

